Not all Blue-Spaces are Created Equal: Variables affecting restorative outcome of indoor blue-spaces-A scoping review

Ammar Ayman Zaino 1, Aisha Rasiya 1, Maryam Banaei 2, 3, Jamalunlaili Abdullah 1, Mohamed Yusoff Abbas 1, Hassan Azman 1

1 Faculty Of Architecture, Planning & Surveying, Univeriti Teknologi MARA, Puncak Alam, Malasiya
2 The Florey Institute of Neuroscience and mental health, Australia
3 University Of Technology, Sydney, Australia

Ammar_zaino@hotmail.com, thayishaar@gmail.com, Maryam.banaei@florey.edu.au,
Jamal858@uitm.edu.my, Myusoff801@uitm.edu.my, azman692@uitm.edu.my
Tel: +607337534

Abstract
The Blue-space theory suggests using water in architecture for restoration and stress reduction. Long-term stress increases the risk of mental health problems of anxiety and depression. However, not all blue spaces have the same restorative effects. This study aims to investigate the characteristic variables of restorative blue spaces through a scoping review. Papers indexed in Scopus, WoS, and Google Scholar were sought. Preferred Reporting Items for Systematic Reviews were used as a review methodology. Results showed 12 variables affecting the blue space’s restorative outcome. Direct variables; size, type, colour, clarity, texture, and indirect variables; proportion, function, illumination, and geometry.

Keywords: Blue space; Mental health; Emotions; Healing spaces

eISSN: 2398-4287 © 2022. The Authors. Published for AMER ABRA CE-Bs by e-International Publishing House, Ltd., UK. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0). Peer-review under responsibility of AMER (Association of Malaysian Environment-Behaviour Researchers), ABRA (Association of Behavioural Researchers on Asians/Africans/Arabians) and CE-Bs (Centre for Environment-Behaviour Studies), Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA, Malaysia.
DOI: https://doi.org/10.21834/ebpj.v7i20.2262

1.0 Introduction
Projected data shows that the most significant global crisis by 2030 is mental health and depression (WHO, 2012). Several studies worldwide have also established that the current COVID-19 pandemic is a unique factor in increasing rates of stress (Dozois, 2020; Hyland et al., 2020; Kaparounaki et al., 2020). Stress is known to contribute to mental health problems such as anxiety and depression. In this era, it has become clear to scientists that one of the biggest challenges the world is facing is mental health. However, how is mental health related to architecture?

Several approaches can be taken to address this question. One of the most well-known approaches is the theory of multi-sensory experience. Multi-sensory architecture refers to the overall spatial stimuli in built environments which can improve or impoverish the quality of experience for the occupant (Ganatra, 2022). By focusing on the occupant-centred approach, therapeutic architecture studies how to improve human experiences for a healthier mind and body connection physiologically, cognitively, emotionally, behaviorally, and spiritually. Hence, the connection between mental health and architecture is well-established to answer the above question. However, many other theories explain how architecture or environments influence our mental health. The Attention Restoration Theory (ART; Kaplan, 1995) suggests that mental health can be improved by time spent in or looking at natural elements such as green or blue space. Based on this
theory, many papers have studied the connection between green space and mental health, and fewer studies have studied the blue space theory. One study showed that not all green spaces are equal in terms of healing effects; it presented different levels of restorative and stressful effects (Wood et al., 2018). Moreover, some evidence shows the most significant effect of blue spaces rather than green spaces when it comes to mental health (Pawlowski, 2020).

There is no universal definition of blue space. However, blue space refers to the presence of water elements in a space, creating a therapeutic effect on human emotions and physiology. It points to the healing effect of water on human emotions and mental health. It reduces stress and creates restoration (Zaino, 2020; Zaino & Abbas, 2020c, 2020a). According to Gascon et al. (2015), who conducted a systematic review about the relationship between time-spent and blue space, their research demonstrated that time-spent is a variable affecting the restorative outcomes. Another finding showed that living within 5 km of the coast improves general mental health (Garrett, Clitherow, White, Wheeler, & Fleming, 2019). This suggests that accessibility is another variable that may affect mental health outcomes. However, there is not a comprehensive study to show the characteristics of the blue spaces associated with mental health, and we still know very little about people's perceptions of blue spaces in psychological terms (Gascon, 2015) (Fiantis, 2021).

What is blue space theory?
A universal definition of blue space does not exist, but it refers to the presence of water elements in a space, creating a therapeutic effect on human emotions and physiology. It points to the healing effect of water on human emotions and mental health. It reduces stress and creates restoration (Zaino, 2020; Zaino & Abbas, 2020c, 2020a).

However, one of the research papers concluded that not all green spaces are equal (in terms of healing effect) - some may have different restorative abilities. Some are not even healing but stressful (Wood et al., 2018). This observation is projected into the realm of blue spaces, and we asked the same question of whether different blue spaces can evoke different restorative effects? Logically, the answer seemed to be yes in our heads. As we started the literature review to find the answer, we found that there are several observations about blue space, and all of them say yes - not all spaces are created equal.

Nevertheless, before diving into that, it is essential to note that in this paper, we define the extent of the healing quality as "restorative outcomes". For example, according to Gascon et al. (2015), who was the first to conduct a systematic review about the relationship between time-spent and blue space, their research demonstrated that time-spent is a variable affecting the restorative outcomes. Another finding showed that living within 5 km of the coast improves general mental health (Garrett, Clitherow, White, Wheeler, & Fleming, 2019). This suggests that accessibility is another variable that may affect mental health outcomes. After knowing this, it has become clear to us, yes, there are variables affecting the restorative outcome of the blue space, which was not enough until the research concluded that research is needed and more detailed information on the characteristics of the blue spaces that promote better mental health as well as (Fiantis, 2021) wrote in his book that we still know very little about people's perceptions of blue space in psychological terms, which is why we are concerned about this issue. However, although it is justified that we need more research on the characteristics of the blue spaces, this still does not answer the question of why we should shed light on blue spaces rather than green spaces? Here is why our main intention is to maximise the healing effect of spaces as the rates of stress and depression increase, and today we have data showing that blue spaces beat green spaces when it comes to mental health (Pawlowski, 2020).

This paper aims to scope-review the variables affecting the restorative outcome of indoor blue spaces. We used scoping review to gain broader data from different fields, including environmental psychology, evidence-based design, and neuroarchitecture. Denyer and Tanfield's proposals were used to structure the methodology: (1) formulation of objectives, (2) locating studies, (3) selection of studies, (4) analysis and synthesis, and (5) the presentation of the results (Figure 1).

2.0 Materials and methods
This scoping review was conducted by following the reporting checklist of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) (Page et al., 2021). A comprehensive literature search was undertaken to identify variables affecting blue space's ability to heal for this study. There were no scoping reviews previously conducted to identify the variables. More detailed information is needed on the characteristics of the blue spaces that promote better mental health (Gascon et al., 2015). More specifically, all the papers published until the end of March 2022 in Scopus, Google Scholar and Web of Science were sought. The title, abstract, keywords and year of publication of the identified records were exported to a MS. Excel spreadsheet. Results were discussed among three researchers. If no agreement could be achieved, the views of a fourth reviewer would have been considered. We included all review papers that, to some extent, showed that the methods they used to identify and select the literature were explicit. Also, studies that reviewed papers published in only one journal were removed. [MB4] We acknowledge that the authors of some of the papers we identified did not aim to identify the variables we are looking for. However, we still cite the variable from their research because it renders a piece of evidence for us that this particular variable has an impact on the restorative outcome of blue space. We utilised Scopus, Google Scholar and Web of Science. We conducted two searches for each database with different keywords because we had to identify two different factors as it is difficult to identify them from one search. (1) Variables related directly to blue spaces restorative outcomes. (2) Variables related to indoor experience perception (because it also affects the restorative outcome when placing the blue space indoors, such as ceiling height or organisation of water features, it may modify the restorative outcome of the blue space. Based on this, we had to identify those variables, too, as they are associated with the restorative outcome of the blue space. But not in a direct way.

The first search was conducted. Only one reviewer screened the titles and abstracts, and papers that were not considering the characteristics of blue space were disregarded, such as the effect of blue space on social issues or the effect of blue space on the elderly wellbeing. We only considered the papers related to the characteristics of blue space and restorative outcome. More specifically, we
focused on the visual characteristics of blue space. Still, we did not consider the word visual when we screened the abstracts and titles because many authors did not look at the problem from this perspective, although the visual aspect is in their paper. That is why we did not exclude papers that did not mention the visual aspect. The keywords search strategy for the first research is as follows - Scopus TITLE-ABS-KEY ((Blue space) AND (mental health) AND (interventions OR characteristics OR size OR quantity OR colour OR scale OR indoor OR organisation OR typologies)). WoS ((TI=(blue space)) AND AB=(blue space AND interventions OR characteristics OR size OR quantity OR colour OR scale OR indoor OR organisation OR typologies)) AND AK=(blue space OR green space ). Google Scholar ((Blue space characteristics) AND (emotions) AND (mental health) AND (typology OR size OR quantity OR colour OR scale OR indoor OR organisation)).

Furthermore, a second search was conducted. Similarly, only one reviewer screened the titles and abstracts of the records, and papers with repetitive variables were disregarded; some other papers were also unrelated, so we eliminated them, such as the effect of colour on social conditions. We only considered the papers that highlighted any variable that affect the restorative outcome when experiencing an indoor architectural space. Then, the reviewer performed an eligibility assessment by carefully screening the full texts of the remaining papers. And rating the eligibility from 1-3. Whereby, (1=related), (2=maybe related), (3=not related). During this phase, we ended up with 30 related, 30 maybe and 200 unrelated. The keywords search strategy for the second research is as follows - Scopus TITLE-ABS-KEY (architecture ) AND (mental AND health ). TI=((architecture OR interior OR space OR indoor) AND (visual )). WoS TI=((architecture OR interior OR space OR indoor) AND (visual )). Google Scholar Architecture AND indoor AND emotions AND mental health.

The data selected was analysed and synthesised. The content analysis-synthesis approach was selected due to its ability to interpret content and adapt to the heterogeneous nature of reviews (Hsieh & Shannon, 2005). Two approaches were followed. First, we grouped and coded the information collected from PRISMA (conventional content analysis). Second, all coded results were discussed and presented in a framework (summative content analysis). Look at Fig. 1

Section | Methods | PRISMA flow diagram
--- | --- | ---
1.0 Introduction | | |
2.0 Material and methods | | |

Raw data | PRISMA
--- | ---
Identification 10772 | Scopus (n= 105 ) and (n=94)  
WoS (n= 42 ) and (n=3111)  
Google scholar (n= 5,530) and (n=1,890)

Screening | Records screened after title and abstract (n = 260)

Duplication | Duplication and similar paper were removed (n=210)

Eligibility | Full-text articles assessed for eligibility (n = 50)

Included | Studies included in qualitative synthesis (N=21)

3.0 Results | Conventional content analysis
4.0 Discussion | Summative content analysis
5.0 Conclusion and recommendation | Presentation of results

Fig. 1. Methodological structure, including PRISMA flow chart

(Author, PRISMA-2022)
3.0 Results

The below table captures the data and codes them. It illustrates the findings of the variables affecting the blue space restorative outcome. In this section of the research, the data was organised and coded. A total of (n=21) papers were selected based on the eligibility criteria explained previously in the materials and methods. It was the results after following the PRISMA flow chart, and from a total (n=10770) papers, we selected 21 papers.

<table>
<thead>
<tr>
<th>Table 1. Blue space characteristics concerning to mental well-being and restoration</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
</tr>
<tr>
<td>(Völker, Matos, &amp; Claßen, 2016) (Houdlén, Weich, de Albuquerque, Jarvis, &amp; Rees, 2018) (Gascon, 2017)</td>
</tr>
<tr>
<td>(Völker, Matos, &amp; Claßen, 2016)</td>
</tr>
<tr>
<td>(Smith, Croker, &amp; McFarlane, 1995) (Pitt, 2018)</td>
</tr>
<tr>
<td>When White et al. (2019)</td>
</tr>
<tr>
<td>(Toet, Henselmanns, Lucassen, &amp; Govers, 2011)</td>
</tr>
<tr>
<td>(Farci, Ohl, &amp; palms, 2018), (Cracknell et al., 2018).</td>
</tr>
<tr>
<td>(Fishcr et al., 2021)</td>
</tr>
<tr>
<td>(Chamilothor et al., 2019)</td>
</tr>
<tr>
<td>(Todorovic, 2008)</td>
</tr>
<tr>
<td>(Environment, 1995), (Zhang, Zuo, Erskine, &amp; Hu, 2016)</td>
</tr>
<tr>
<td>(Häge, 1995)</td>
</tr>
<tr>
<td>(Ruggles, 2018), (Häge, 1995), (Dzubic, Perdue, &amp; Ellard, 2013)</td>
</tr>
</tbody>
</table>

(Authors, 2022)
4.0 Discussion
Through a scoping review, we aimed to determine the variables affecting indoor blue space restorative outcome. We found 12 indoor blue space variables that affect mental wellbeing. We categorised them into two categories - one is directly associated with restorative water outcomes, and the other one is indirectly associated with restorative water outcomes (because of indoor context). However, all these variables may potentially modify the blue space’s restorative outcome. Although some data were also addressed about the details of each variable, for example, we found that the size of a blue space or the amount of water in space can change the restorative outcome. Generally, the more water, the higher the healing effect. Yet, some findings have more detailed suggestions; for example, there is a significant effect when the amount is 43% and above in the local area (Houlden et al., 2018).

**Category A:** The following variables are directly associated with water. (1) Size of blue space, (2) Type of blue space, (3) Colour and clarity of blue space, (4) Time spent in space in blue space, (5) Dynamic textures of water, (6) Perceived biodiversity of blue space.

**Category B:** These variables are indirectly associated with water. (1) Use of space, (2) Ceiling height of space, (3) Arrangement of scenes, (4) Illumination of space, (5) Proportion of space, and (6) geometry of space.

![Diagram of variables affecting indoor blue space restorative outcome](image)

**Fig. 2.** The variables affecting indoor blue space restorative outcome (Author, 2022)

5.0 Conclusion and recommendations
The blue space theory refers to the presence of water elements in a space, creating a therapeutic effect on human emotions and physiology. It points to the healing effect of water on human emotions and mental health. It reduces stress and creates restoration (Zaino, 2020; Zaino & Abbas, 2020c, 2020a). A gap exists in knowing the variables that affect the indoor blue-space restorative outcome. Considering the Preferred Reporting Items for Systematic Reviews Items - this study reviews comprehensive literature to identify those variables. All papers indexed in Scopus, Web of Science and Google Scholar until March 2022 were sought. Results showed 12 variables
affecting the restorative outcome of blue space. These variables were further categorised into two - one is directly associated with restorative water outcomes, and the other is indirectly associated with restorative water outcomes (because of indoor context). Category A: The following variables are directly associated with water. (1) Size of blue space. (2) Type of blue space. (3) Colour and clarity of blue space. (4) Time spent in space in blue space. (5) Dynamic textures of water. (6) Perceived biodiversity of blue space. Category B: These variables are indirectly associated with water. (1) Use of space. (2) Ceiling height of space. (3) Arrangement of scenes. (4) Illumination of space. (5) Proportion of space. (6) The geometry of space. Despite its exploratory nature, the findings of this research provide insights into the variables that can be manipulated to affect the restorative outcome of a blue space in general.

This study lays the groundwork for future research into exploring each variable in-depth to understand the possible details required for implementation in designing restorative architecture. A natural progression of this work is to conduct an empirical understanding of each variable, using an EEG device to establish an empirical understanding of each variable. Such as how much time is required to gain the most benefit of a blue space or the size, type, colour and texture.

Acknowledgements
The authors would like to acknowledge some agencies and individuals for their contribution to putting this paper together. Firstly, we are very grateful for this academic opportunity provided by the environmental proceeding journals and their editors for critical advice, which allowed us to sharpen the submission. Secondly, we thank them for their contribution to the paper. We took time out of their hectic and very different lives to provide the interdisciplinary contribution we were striving for. We sincerely appreciate the continued support of the embassy of the state of Palestine in Malaysia and the general union of Palestinian students in Malaysia for their never-ending support towards seeking new knowledge.

Paper Contribution to Related Field of Study
The prominent contribution of this paper revolves around determining the variables affecting the restorative outcome of indoor blue spaces from comprehensive data in different fields, including environmental psychology, evidence-based design, and neuroarchitecture.

References