

e-IPH

e-International blishing House Ltd United Kingdom

Available Online at www.e-iph.co.uk Indexed in Clarivate Analytics WoS, and ScienceOPEN

https://www.amerabra.org

12th AMER International Conference on Quality of Life The Magellan Sutera Resort, Kota Kinabalu, Malaysia, 26-28 Jan 2024

Effects of Core Stability Training on Muscle Physiology among Adults with Low Back Pain

Lin Pipeng^{1*}, Zarina Zahari², Azliyana Azizan³, Yang Yajun⁴

* Corresponding Author

¹ Centre of Physiotherapy, Faculty of Health Sciences, Universiti Teknologi MARA, Puncak Alam, 42300 Selangor, Malaysia ² Advanced Rehabilitation Engineering in Diagnostic and Monitoring Research Group(AREDiM), Electrical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Permatang Pauh, Penang, Malaysia.

³ Clinical and Rehabilitation Exercise Research Group, Faculty of Health Sciences, Universiti Teknologi MARA, Puncak Alam, 42300 Selangor, Malaysia.

⁴ Sports Rehabilitation Department, Faculty of Physical Education, Minzu Normal University of Xingyi, Xingyi City, 562400 Guizhou Province, China.

> chndoctor2022@gmail.com ; zarinazahari@uitm.edu.my; azliyana9338@uitm.edu.my; 814208445@qq.com Tel: 0176418719

Abstract

Background: The effects of core stability training (CST) on muscle physiology in adults with chronic low back pain(CLBP) are still debatable. Objectives: To explore the effects of CST on muscle physiology in adults with CLBP. Methods: Eligible studies published in English from inception to October 2023 were extracted from PubMed, Web of Science, and Scopus in this review. Pedro was used for scoring and followed the PRISMA guidelines. Findings: Core muscle strength (1 study), thickness (4 studies), and activation (6 studies) favored CST. Conclusion: CST was more effective in improving core muscle strength, and activation for patients with CLBP.

Keywords: Core stability training; Muscle physiology; Low back pain

eISSN: 2398-4287 © 2024. The Authors. Published for AMER & cE-Bs by e-International Publishing House, Ltd., UK. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer–review under responsibility of AMER (Association of Malaysian Environment-Behaviour Researchers), and cE-Bs (Centre for Environment-Behaviour Studies), College of Built Environment, Universiti Teknologi MARA, Malaysia. DOI: https://doi.org/10.21834/e-bpj.v9i27.5717

1.0 Introduction

Low back pain (LBP) is the primary cause of disability years lived globally, and it poses a significant challenge to the global health system(Ghafouri et al., 2023). LBP refers to any uncomfortable stimulation between the twelfth pair of ribs and hip creases that can induce mild to severe disorders with or without leg discomfort(Ferreira et al., 2023). It is generally characterized as non-specific (90%) or specific (10%) and as acute (6 weeks), subacute (6-12 weeks), or chronic (greater than 12 weeks)(Frizziero et al., 2021). Two-thirds of adults are believed to have experienced or will have non-specific low back pain (NSLBP) at some point in their lives(Areeudomwong et al., 2019). NSLBP has no clear pathophysiology as to what causes the pain. However, it is thought to be caused by variables such as profound core muscle weakness(Areeudomwong et al., 2019). The core, which is made up of muscles that stabilize the spine, pelvis, and hips, is essential for maintaining posture and facilitating daily motions. As a result, resolving the multifarious issues offered by LBP may require strengthening and optimizing core muscle physiology. The muscle physiology of this study includes core muscle activation

eISSN: 2398-4287 © 2024. The Authors. Published for AMER & cE-Bs by e-International Publishing House, Ltd., UK. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer–review under responsibility of AMER (Association of Malaysian Environment-Behaviour Researchers), and cE-Bs (Centre for Environment-Behaviour Studies), College of Built Environment, Universiti Teknologi MARA, Malaysia. DOI: https://doi.org/10.21834/e-bpj.v9i27.5717 and fatigue, core muscle strength and endurance, and core muscle thickness. These indicators respond to different aspects of core muscle function and may be strongly associated with LBP.

However, the best effective treatment for LBP still needs to be discovered. The most recent clinical practice guidelines encourage patients to remain physically active, as prolonged inactivity is detrimental to healing and overall well-being(Stochkendahl et al., 2017). Core stability training (CST) has emerged as a promising approach for improving core muscle physiology. The primary objective of CST is to replicate normal muscle function by re-educating the deep trunk muscles and coordinating both deep and superficial trunk muscles (Akhtar et al., 2017).

This study aims to investigate the cumulative body of evidence on the efficacy of CST as a therapeutic intervention for improving muscle physiology in individuals with CLBP. To determine whether CST is more effective relative to other therapies in improving various specific measures of muscle physiology in patients with CLBP

2.0 Literature Review

2.1 Muscle physiology

2.1.1 Core muscle activation

During diverse functional tasks, LBP is related to trunk kinematics and muscle activation (Hemming et al., 2019). A study has shown that patients with CLBP had delayed activation of deep abdomen and back muscles and increased activation of superficial trunk muscles (Kamel et al., 2021).

2.1.2 Core muscle fatigue

LBP, lumbar back muscle fatigue, and reduced contractility are caused by each other. Muscle fatigue has been found in studies to hurt the coordination and stability of improved movement patterns (Ghamkhar et al., 2019).

2.1.3 Core muscle thickness

One study showed that the cross-sectional area of the multifidus muscle at multiple segments on the painful side of LBP patients was significantly smaller than that on the non-painful side (Wan et al., 2015). Core muscle thickness may have a positive correlation with core muscle strength. Decreased core muscle thickness may lead to decreased core strength and, thus, core instability.

2.1.4 Core muscle strength

The core muscles of the abdomen and the back work together to maintain the body's posture control and lumbar spine stability and play a role in the body's daily behavior patterns. A study has shown that the weakness of the lumbar extensor muscles and the imbalance of the lumbar and abdominal muscles will lead to a decrease in the stability of the lumbar spine, changes in the body posture pattern, and compensatory movements in other parts, resulting in LBP(Czaprowski et al., 2018).

2.2 Core stability training

Core muscle weakness has been linked to persistent LBP in studies. CST is a standard method for recovering trunk muscle functioning and achieving optimal lumbar stability throughout regular activities (Mohammadi et al., 2023). CST can improve the transversus abdominis and multifidus thickness and the anti-fatigue ability of the patient's core muscles, thereby improving the patient's balance ability. However, a comprehensive study found that specialized stabilizer exercises may have a role in some people with CLBP, but they are no more helpful than other active therapies (Khodada et al., 2019). At present, it is unclear which sub-indicators of CST's efficacy in improving muscle physiology in patients with CLBP are still controversial compared to other therapies, and which sub-indicators have a consensus on its efficacy.

In summary, previous studies have shown that patients with CLBP have varying degrees of muscle physiology abnormalities, which are mainly manifested as delayed activation of deep trunk core muscles, core muscle fatigue, decreased core muscle thickness, and decreased core muscle strength, which in turn lead to decreased trunk stability and uncoordinated activities. Although some studies have demonstrated that CST can improve muscle physiology in CLBP patients, it is still controversial whether CST is the most effective method in improving muscle physiology in CLBP patients. In this study, we attempted to summarise the advantages and disadvantages of CST relative to other therapies in improving the muscle physiology of CLBP patients by systematically collating, evaluating, and analyzing the results of previous studies. In this way, it will make a positive contribution to the exploration of the most effective CLBP therapies.

3.0 Methodology

3.1 Study design

This study is a systematic review.

3.2 Inclusion and exclusion criteria

To be considered, an article must contain the following characteristics: (1) an RCT design; (2) patients with LBP aged 18-60 years old; (3) used CSE as an intervention, and there was a control group that got conventional intervention or another intervention; (4) the primary outcomes of interest was muscle physiology(muscle activation, muscle fatigue, muscle thickness, muscle strength, muscular endurance, or muscle control) or(and) pain intensity; (5) low back pain that has lasted at least three months. If a study met any of the following criteria, it was considered disqualified: (1) participants with LBP caused by specific conditions or pathologies; (2) the study sample mean age was either \geq 60 years or <18 years; (3) review, case report, meeting abstract, commentaries, systematic reviews, qualitative papers, poster abstracts, or monograph; (4) conference papers; (5) unclear outcome indicators or incomplete data; (6) full text not available; (7) studies conducted in languages other than English; (8) repeatedly published research.

3.3 Search strategy

To locate studies fulfilling the inclusion criteria, we searched the following databases from inception to October 2023: PubMed, Web of Science, and Scopus. Grey literature was excluded due to the diversity of scientific rigor and the lack of criteria for conducting systematic grey literature searches (Paez, 2017). The primary phrases "core stabilization exercise," core stability training," core stability," stabilization exercise," low back pain," back pain," lumbar pain," and"LBP" were employed. In adherence to the PICO framework, the specified keywords were systematically explored through Medical Subject Heading (MeSH) phrases, amalgamated using Boolean operators ("AND," "OR," and "NOT"), aligning with the clinical research question. See APPENDIX A for the entire search strategy.

Two reviewers (LP and YY) were utilized to screen for appropriate titles, abstracts, and complete papers using the pre-specified criteria. When inclusion criteria were not met, articles were eliminated. In cases where there was disagreement, a third reviewer (ZZ) was consulted. To ensure that the results were reported systematically, the PRISMA standards were followed(Page et al., 2021).

3.4 Data extraction

Following the selection of studies, data were extracted using a data extraction form for the characteristics of subjects' average age, sample size, interventions, follow-up, outcomes, and findings(see Table 1).

The PEDro scale, an article evaluation system, was utilized to assess the quality and validity of each study. The tool had 11 items, each of which needed a yes/no response: yes received 1 point, no received 0 points. Item 1 is connected to external validity. Items 2-9 correspond to a paper's internal validity. The PEDro scale had a total score of 10. PEDro ratings ranged from excellent (9 to 10), acceptable (6 to 8), reasonable (4-5), and bad (less than 4)(Kakavas et al., 2023).

Article	Subjects	Intervention	Follow	Outcomes	Findings	PEDro
			Up			score
1.Areeu	•N=45	•CSE: practiced recruitment of deep trunk muscles	3	Pain(NPRS),	CSE and PNF training provided	9/10
domwon	 Average age: 	•PNF: 5 repetitions of each PNF training for three	months	activations of RA,	short-term and long-term effects on	
g P et	CSE=24.08±1.00	sets, with a 30 s rest between repetitions and a 60 s		TrA, ICLT and LM	pain, and increased deep trunk	
al.,2019	PNF=24.00±8.47	rest after each set.		muscles (S-EMG)	muscle activity in CLBP patients.	
	CG=24.36±9.97	•CG: ultrasound for 5-10min + 20-min general			 There was no significant 	
		trunk strengthening exercise			difference between CSE and PNF	
		•Duration: 4 weeks			in terms of improvement of back	
		•3 times/wk, 30min/session			pain and muscle physiology.	
2.Cai C	•N=84	•All participants warm-up(general stretching and	3	Pain(NPRS), Lower	 All three groups improved pain (p 	6/10
et	 Average age: 	stationary bicycling for 15 minutes)	months	limb	< 0.001), and the LL group had the	
al.,2017	LL=28.9± 5.3	•LL: resistance exercises targeting the knee and hip	and 6	strength(isokinetic	most significant improvement.	
	LE=26.1±4.1	muscles	months	dynamometer), TrA	 Knee extension strength increased 	
	SE=26.9±6.4	 LE: progressive back extensors training 		and LM	(p < 0.001) in the LL group, which	
		•SE: a series of TrA and LM muscle activation and		activations(ultrasoun	was higher than the other groups (p	
		motor control training		d image), lumbar	< 0 .001).	
		•Duration: 8 weeks		extensor muscle	• All 3 groups improved similarly	
		•2 times/wk, 30min/session		fatigability(S-EMG)	in back muscles function.	
3.Mende	•N=14	•CSE: three phases progressing with the level of	Post-int	Pain(NPRS),	 The CSE improved pain 	7/10
s PRF et	 Average age: 	difficulty +.usual exercise routine.	erventi	maximum isometric	better(p=0.04).	
al.,2022	CSE=27±2	•CG: usual exercise routine such as running,	on	strength and trunk	Trunk muscle strength remains	
	CG=27±1	cycling, swimming and bodybuilding +an		muscle	unchanged in the CSE, while the	
		explanatory class at end		resistance(manual	CG presented a decrease in flexural	
		•Duration: 12 weeks		dynamometer)	strength to the right side (p=0.04).	

Table 1 Major characteristics of included studies

_						
		•2 times/wk, 45min/session			 There was no difference in the 	
					rates of resistance to fatigue	
					between groups.	
4.Kang	•N=24	•All subjects 5-min warm-up, and 5-min	Post-int	Pain(VAS), back	 All post-test values in the 	6/10
TW et	 Average age: 	cool-down.	erventi	muscle	unstable surface group improved	
al.,2017	SE=43.41±5.96	•SE: elbow-toe, back bridge, side bridge, and 290	on	strength(DBMSM)	significantly more than those in the	
	SEUS=42.83±6.9	curl-up motions on stable surface + GPT			stable surface group.	
	9	•SEUS: elbow-toe, back bridge, side bridge, and			 After the intervention, all 	
		290 curl-up motions on unstable surface + GPT			dependent variables at the 6-week	
		GPT(general physical therapy), consisting of hot			post-test had significantly	
		pack treatment at 80 °C, interferential current			improved than those in the pre-test	
		therapy (2000–2500 Hz), and ultrasonic treatment			results in both groups.	
		•Duration: 6 weeks				
		•30min/session, 5 times/wk				
5.Park et	•N=70	•All subjects 10-min warm-up, 30-min SE, and	lmonth	Pain(VAS), spine	 Spine extensor strength was 	8/10
al.,2023	•Average age:	10-min cool-down.	and 3	extensor	improved in both groups.	
	AB=44.8±10.8	•AB: performed SE with AB.	months	strength(Medx	 Pain and function were also 	
	SE=43.0±10.6	•SE: performed SE, breathe normally without		extension machine)	improved in both groups, but the	
		special emphasis on breathing.			effect was stronger in the AB group	
		•Duration: 24 weeks			than in the SE group.	
		•50min/session, 2 times/wk				
6.Sipavi	•N=70	•All subjects 5-min warm-up, and 5-min	4	Pain(VAS),	 Positive effects for the 	5/10
ciene et	•Average age:	cool-down(static and dynamic stretching exercises)	weeks,	cross-sectional area	cross-sectional area of the	
al.,2020	SE=38.3±5.1	• SE: strengthen the deep trunk stabilizing muscles	8	of the multifidus	multifidus muscle, and pain lasted	
	CG=38.5±6.2	(especially TrA, IO and LM) and control pelvic	weeks	muscle(ultrasound)	for 4 weeks in CG and for 12	
ļ		muscles.	and 12		weeks in SE group.	
		 CG: improve trunk flakor and extensor muscles 	weeks		 The LWI strength increased and lasted for 8 models in both movements 	
		strengtn			lasted for 8 weeks in both groups.	
		Duration: 20 weeks A5-min/maxim 2 times /min/maxim				
		• 4 Jmin/session, 2 times /wk			B (1) (1) (1) (1) (1)	2/20
7.Salam	•N=32	CSE: exercises involved coordinated training and	Post-int	Pain(NPKS), FKK of	Pain reduced in both groups, with	5/10
at et	•Average age:	independent activity of deep trunk muscles.	erventi	LM and	no significant difference between	
al.,2017	CSE=35.83±9.31	MICG: normalize the abnormal movement patterns	on	ICLI(S-EMG)	the groups.	
	MCG=36.09±9.6	and postures and to relax trunk muscles.			FRR of LM did not change in	
		Duration: 4 weeks			either group atter treatment.	
		• 40min/session, 2 times /wk			 FRR of ICLT was significantly 	
	27.42			D. OTTOS A. T	increased after treatment in MCG.	0.00
8.Wang	•N=42	PPCE: 1.core muscles against gravity on a stable	6	Pain(VAS), thickness	 The results has no significant 	9/10
et anna	•Average age:	platform. 2. trunk muscle against gravity on an	months	and contractility of	ditterence between 2 group.	
al.,2023	PPCE=26.00(24.	unstable surface. 3. exercise performed on unstable		IrA and	 Atter 6-month follow-up the 	
	5-28.5)	and less supporting surface with resistance training.		LM(ultrasound)	scores of 2 groups decreased	
	CSE=25.00(23.5-	• CSE: prone-plank, single legbridge, side-plank,			significantly compared to before.	
	30.0)	doubleleg-bridge, and birddog.			• The thickness of bilateral TrA and	
		Duration: 8 weeks			left MF ($p < 0.05$) was elevated .	
		• 30min/session, 3 times /wk				
9.Bae et	•N=39	•SUE: sit-up exercise using a new training device.	6	Pain(VAS),	 Thickness ratios of RA and EO in 	6/10
al.,2018	 Average age: 	CSE: low-intensity isometric contractions first,	months	abdominal muscle	SUE group and those of TrA in	
	SUE=32.7±6.1	then gradually perform co-contraction of muscles		thickness(Ultrasound	CSE group showed significant	
	CSE=32.4 ± 10.7	through dynamic functional tasks.), motor activity of	difference after exercise (p < 0.05).	
		• Duration: 4 weeks		core	 The ratio of activation of IO 	
		 30min/session, 3 times /wk 		muscles(S-EMG)	relative to RA and pain improved	
					in both groups (p < 0.05).	

<u> </u>						
					Pain had no significant difference	
					between 2 groups(p > 0.05).	
10.Naro	•N=34	 CSE: performed 16 core stabilization exercises. 	Post-int	Pain(VAS), thickness	 CSE increased contracted 	6/10
uei et	•Average age:	CG: transcutaneous electrical nerve stimulation	erventi	of trunk	thickness of TrA and Gmax.	
al.,2020	CSE=32.23±6.32	and a 'hot-pack'.	on	muscle(Ultrasound),	•The pain in both groups decreased	
	CG=32.13±6.96	Duration: 4 weeks		Multifidus, TrA and	after treatment, but the decrease in	
		 15min/session, 5 times /wk 		Gmax activity	the CSE group was more	
				(S-EMG)	significant(P<0.05).	
11.Franç	•N=30	• SE: exercises focused on the TrA and LM muscles	Post-int	Pain(VAS &McGill	 As compared with baseline, both 	7/10
a et	•Average age:	· CG: exercises focused on stretching the erector	erventi	pain questionnaire),	groups relieve pain (P < 0.001).	
al2012	SE=42.07±8.15	spinae, hamstrings, and triceps surae.	on	TrA muscle	 SE group had significantly higher 	
~	CG=41 53+4 41	• Duration: 6 weeks		activation canacity	gains for all variables	
		• 30min/sassion 2 times /wh		(PBID)	• The CG group did not effectively	
		- Sound Session, 2 times (with		(120)	activata tha TrA (P=0.94)	
12 8	N-42	SEvent stran(40min) Tot and polyin flags	Dect int	Dein(VAS)	a When any main a more for ania	6/10
12.5eng	•1N=42	· SE.mst stage(40min), The and pervic moor	Post-int	rain(VAS), core	when comparing groups for gain	0/10
1 2021	•Average age:	muscles were contracted. Progression (comm), do	ervenn	strengtn(partial	scores, there were more significant	
ai.,2021	SE=40.78±8.8	exercises in supine, prone, quadruped, ondge,	on	curi-up test), trunk	improvements in pain during	
	CG=43.32±8.85	sitting positions, and lastly with Swiss ball		endurance(trunk	activity, trunk endurance and	
		 CG: improve strength and flexibility of 		flexor, trunk	function after SE ($p < 0.05$).	
		lumbopelvic muscles.		extensor, and		
		Duration: 6 weeks		bilateral side bridge)		
		• 3 days / week		tests		
13.Dann	•N=59	• SE: activate the multifidus in a specific	Post-int	Multifidus cross	• The cross sectional area of the	6/10
eels et	•Average age:	progression of exercises	erventi	sectional	multifidus muscle was significantly	
al.,2001	SE=43±13	• SE+DRT: SE+alternated progressive resistance	on	area(standard	increased at all levels after training	
	SE+DRT=44±12	training, concentric and eccentric movements.		computed	in SE+DSRT, and no significant	
	SE+DSRT=43±1	SE+DSRT: SE+interrupted progressive resistance		tomography images)	diferences were found in other 2	[
	2	training, cycling movement. 5s static contraction			groups.	
		between concentric and eccentric phase / time.				
		Duration: 10 weeks				
14.Alp	•N=48	 SE: warming (5 minutes), stretching (5 minutes), 	Post-int	Pain(VAS),	 All variables were improved in 2 	8/10
et	•Average age:	stabilization exercises for the multifidus/TrA	erventi	endurance of	groups except endurance of dorsal	
al.,2014	SE=48(36-43)	muscles (30 minutes), and cooling (5 minutes), 3	on	abdominal	extensors in CG group.	
	CG=51(25-64)	times / week, for a total of 45-60 minutes a day.		muscles(Krause-Web	 There was no significant 	
		CG: lumbar isometric and lumbar		er test), endurance of	difference in relieving pain	
		flexion-extension exercises, 1x20 repetitions a day		dorsal extensors	between two groups.	
		Duration: 6 weeks		(Sorensen test)	SE group can improve endurance	
15 Ferrer	•N=30	• SE: companyal stabilization avancies formed	Doct int	Dain/VAS MaC:11	• As compared to becaling both	2/10
a FR of	-Average age:	the TrA and I Mmurcles	artianti	nain quarticonnaire)	trastmants ware effective in	//10
a 1 2010	SF=42.07±8.15	CG: sumerficial strengthening avaraises forward	on	TrA murala	caliaving name (n=0.001)	
W., 2010	CG=41 73+6 42	on the RA TO FO and erector chines		activation canacity	• Those in the SF had cignificant	
	00 11.120.12	• Duration: 6 weeks		(PBU)	sains for all variables when	
		• 2 times / week. 30 min / session			compared to CG (p<0.001).	
16.Alrw	•N=30	• SE ; abdominal side support and quadrumed	Post-int	Pain(NPRS).	Supplementing SE with NMES	6/10
aily et	•Average age:	exercises, 20min / session.	erventi	Paraspinal muscle	did not offer any additional clinical	
al., 2019	SE=38.33 ± 11.3	 SE+NMES : abdominal, side support. and 	on	strength(Biodex 3	benefit for the chronic low back	
~	SE+NMES=33.4	quadruped exercises, 20min / session. The NMES		Pro dynamometer)	pain patients.	
	0±9.0	was applied to the lumbar paraspinal muscles for		v#vvvvvvvvvvv	• After treatment, the low back pain	
		20 min/ session.			and paravertebral muscle strength	
		Duration: 6 weeks			of the two groups of patients were	
		• 2 times / week			significantly improved.(P<0.05).	

17.Amir	•N=38	• SE : ADIM at the supine position, ADIM with heel	Post-int	Pain(NPRS), back	 Neither of the two interventions 	7/10
i et.,	 Average age: 	slides, ADIM with bridging, ADIM with single leg	erventi	muscles	wasn't superior in reducing pain.	
2022	SE=32.4±7.6	bridging, bird-dog exercise, and supine dead bug.	on	endurance(Sorensen	 Flexi-bar showed significant 	
	Flexi-bar= $35.2 \pm$	• Flexi-bar: chest and back, lower back and chest,		test)	improvement in back muscles	
	5.6	deep back extensors, core muscles, multifidus,			endurance over SE(p < 0.001).	
		torso musculature, glutes, bottom			Pain and back muscle endurance	
					improved significantly in both	
					groups after training($p < 0.001$).	
18.Naba	•N=41	 SE: stabilization exercises + electrotherapy 	Post-int	Pain(VAS), muscle	• Pain and muscle size were	7/10
vi et	•Average age:	 CG: routine exercises + electrotherapy 	erventi	dimensions of right	improved obviously in both groups	
al,2017	SE=40.75±8.23	Duration: 4 weeks	on	and left TrA and	except the right-side LM	
	CG=34.05±10.75	• 3 times / week		lumbar <u>multifidus</u>	cross-sectional area of CG after	
				(Ultrasonic-ES 500)	interventions.	
					 Theres's no significant 	
					differences between both groups on	
					pain and muscle dimensions.	
19.Suh	•N=60	 FE=flexibility exercise 	6week	Pain(VAS),	• SE and WE significantly	7/10
et	 Average age: 	 WE=walking exercise 	and 12	endurance in 3	improved pain.	
al,2019	FE=53.54±15.69	 SE=stabilization exercises 	week	postures (supine,	 WE and SWE significantly 	
	WE=54.15±13.8	 SWE=stabilization with walking exercise 		side-lying, and	improved muscular endurance of	
	9	Duration: 6 weeks		prone), strength of	back muscles.	
	SE=57.40±15.88	 5 times / week, 30-60min / session 		lumbar	 There was no significant 	
	SWE=54.75±14.			extensor(manual	difference between the 4 groups	
	98			muscle tester)	with pain at pre-, immediately	
					post-, and 6 weeks-post exercise.	
20.Ahm adizadeh	•N=32 •Average age:	•All subjects performed stretching (10-min warm-up, and 10-min cool-down)	Post-int erventi	Pain(VAS), abdominal muscle	Only in SE group the TrA muscle activity during abdominal	8/10
et al	SE=31 12+8 29	• SE: salf-care training nlus 24 sessions of	on	activity(I)]trasono ers	hollowing exercises were	
2019	CG=34 19+8 36	stabilization avarcisas		anhu)	significantly increased $(n < 0.05)$	
	00-51.120.50	• CG: salf-care training		00000	There was no significant	
		Duration: 8 moder			difference between the two ground	
		- Duration: 8 weeks			in main(a >0.05)	
21 Cuth	M-51	• 5 times / week, oomin / session	De et int	Marala dhialanana af	in pan(p >0.03).	7/10
21.Gum	•IN=J1	 ISE: traditional bridge exercise consisted of 4 	Post-int	RO IO and TA	Neither ISE nor SD has an	1110
10 et al.,	•Average age:	possible levels.	erventi	LO, IO, and ITA	immediate clinical effect on EO,	
2012	13E=23.8 ± 7.0	SD: 4 possible levels of the suspension-oridging	on	dunng an	10, of TrA activation immediately	
	SB=22.3 ± 3.1	exercise		ADIM(Ultrasound	after a single exercise intervention.	
		All subjects performed 0 repetitions at each level		imaging), muscle	 There was a significant 	
		and were progressed based on specific criteria.		thickness(contraction	group-by-time interaction wherein	
				ratio of EO, IO, and	TSE resulted in greater TrA	
				IrA)	contraction atter exercise than SB.	
22.Kwo	•N=30	 SE: conducted ADIM in prone, hook-lying, 	Post-int	Pain(VAS), TrA	 SE for LBP patients is more 	6/10
n, et	•Average age:	quadruped, and straight-standing positions	erventi	activation	effective than CG in improving	
al.,2020	SE=31.67 ± 8.91	 CG: trunk strengthening exercise. 	on	capacity(PBU)	pain , and TrA activation capacity.	
	CG=35.33±6.76	 Each motion was maintained for 10 seconds. Each 			 There were no significant 	
		motion /15 times and 3 repetitions / set.			differences between 2 groups in	
					TrA thickness.	
23.Hoss	•N=37	• All subjects warming up (pedaled a stationary	Post-int	Pain(VAS), the	After interventions, the pain score	5/10
einifar et	•Average age:	bike for 5 minutes and then did stretching exercises	erventi	thicknesses of the	decreased in both groups.	
al.,2013	SE=40.1±10.8	for 10 minutes).	on	MF and TrA	 Thickness of left multifidus 	
, T	CG=36.6±8.2	• SE: Stabilization exercises were performed in 6		muscles(ultrasound	increased significantly during	
		levels from easy to difficult. Each exercise 10 times		apparatus)	resting and contracting in SE.	
		for 10 seconds with low intensity.			· Thickness of right TrA during	

		• CG: McKenzie includs 6 exercises: four			ADIM, and thickness of left TrA	
		extension-type exercises and two flexion-type and			during active straight leg raising	
		two flexion-type exercises.			increased significantly in SE.	
		Duration: 6 weeks			• Pain, thickness of right TrA	
		 3 times / week, 60min / session 			during ADIM, and thickness of	
					left <u>TrA</u> during active straight leg	
					raising in SE group were greater	
					than those on Mackenzie.	
24.Ehsa	•N=47	· All subjects warming up and cooldown (on a	Post-int	Pain(VAS), lateral	• The results indicated significant	9/10
ni et al,	 Average age: 	treadmill and stretching exercises) in each session.	erventi	abdominal muscles	increases in TrA muscle thickness	
2020	SE=36.40±7.02	• SE: stabilization exercises with emphasis on the	on	thickness(ultrasoun	during standing $(P = 0.02)$ and	
	$CG=35.50 \pm 6.12$	isolated contraction of the TrA, MF, and pelvic		d imaging)	significant decreases in pain	
		floor muscles and co-contractions of the involved			following SE (P <0.001).	
		muscles in the different positions.			• The CG group revealed only	
		• CG: general exercise without emphasis on			significant decreases in pain after	
		contraction of the TrA, MF, and pelvic floor			intervention ($P = 0.03$).	
		muscles.			• The SE group exhibited greater	
		Duration: 6 weeks			changes of pain after the	
		• 3 times / week, 40min / session			intervention.	
25.Ulger	•N=35	• SE: Lactivated the core muscles in various	Post-int	Pain(VAS), TrA	 Pain improved significantly after 	6/10
et al.,	 Average age: 	positions. 2. more complex movements such as	erventi	muscle	both interventions ($P < 0.05$). And	
2020	SE=55.08±2.67	bridge exercises. 3 exercises with resistance bands	on	activation(stabilizer	both approaches were similarly	
	Yoga=47.12 ±	and the exercise ball.		biofeedback device)	effective on pain.	
	7.07	• Yoga: yoga program			• Improvements in the stabilization	
		Duration: 16 weeks			program were higher on the TrA	
		• 2 times / week, 60min / session			activation (P < 0.05).	
26.Chan	•N=30	PSE=DMST+pain management	Post-int	Pain(NRPS), trunk	Both PSE and TSE improves pain	8/10
et al.,	•Average age:	 TSE=MBG3(modified curl-up, kneeling side 	erventi	enduranc of flexion,	and trunk endurance (p < 0.001).	
2020	PSE=33.30±5.78	bridge, and bird dog)+pain management	on	extension and lateral	 Therrs's no significant difference 	
	CSE=33.8±4.93	Duration: 5 weeks		(time-based static	in all outcomes betweent 2 groups	
		• (3 exercises, 3 sets, 10 repetitions with 5 s		hold test)	(p>0.05).	
		contraction hold)				

KEY

CSE=Core Stabilization Exercises, CG=Control group, NPRS=Numerical Pain Rating Scale, SE=Stabilization Exercises, LM=Lumbar Multifidus, TrA=Transversus Abdominis, VAS=Visual Analog Scale, SEMG=Surface Electromyography, RA=Rectus Abdominis, ICLT=Iliocostalis lumborum Pars Thoracis, LL=Lower limb, LE= lumbar Extensor, SFE=Spinal Flexibility Exercise, DBMSM=Digital Back Muscle Strength Meter, AB=Abdominal Bracing, MCG=Movement Control Group, FRR=Flexion Relaxation Ratio, PPCE=Progressive Postural Control Exercise, PBU=Pressure Biofeedback Unit, DRT=Dynamic Resistance Training, DSRT=Dynamic-Static Resistance Training, NMES=Neuromuscular Electrical Stimulation, FE=Flexibility Exercise, WE=Walking Exercise, SWE=Stabilization with Walking Exercise, ADIM=Abdominal Drawing-In Maneuver, IO=Internal Oblique, EO= External Oblique, DMST=Progressive Dynamic Muscular Stabilization technique, PSE=Progressive Stabilization Exercise, TSE=Traditional Stabilization Exercise, SM=Spinal Mobilization, SB=Suspension Bridging, SEUS=Stabilization Exercise on Unstable Surface, SUE=Sit-Up Exercise

4.0 Findings

4.1 Results of PRISMA and Pedro's Scoring

Fig. 1 depicts the search results—the original search produced 2090 items, which were then reviewed for inclusion. There were 620 duplicate entries eliminated, leaving 1470 articles. Following the filtering of article titles and abstracts, 251 articles remained. Following a full-text review, 26 studies were incorporated.

Fig. 1: PRISMA Flow Diagram

The table below provides the findings of each study's evaluation using the PEDro scale (Table 2).

-

								,				
Articles	1. E ligibilit y Criteri a	2. R andom Allocat ion	3. C onceal ed Allocati on	4. B aseline Compar ability	5. Bli nd Subjects	6. Bli nd Therapi sts	7. Blind Assess ors	8. Measures of key outcomes from more than 85% of subjects	9. Intention to treat analysis	10. Betwee n-group compari sons	11. Point Estimat es &variabi lity	PE Dro score
1. Areeud omwong et	\checkmark	V	V	V	×		V	V		\checkmark	V	9/10
2. Cai et al.,2017	\checkmark	\checkmark	Uncl ear	\checkmark	\checkmark	×	×	\checkmark	×	\checkmark	\checkmark	6/10
3. Mende s et al.,2020	\checkmark	\checkmark	Uncl ear	\checkmark	×	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	7/10
4. Kang et al.,2017	\checkmark	\checkmark	Uncl ear	\checkmark	Uncl ear	Uncl ear	Uncl ear	\checkmark	\checkmark	\checkmark	\checkmark	6/10
5. Park et al.,2023	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	×	\checkmark	\checkmark	8/10
6. Sipavici ene et	\checkmark	\checkmark	Uncl ear	\checkmark	Uncl ear	Uncl ear	Uncl ear	\checkmark	Uncle ar	\checkmark	\checkmark	5/10
al.,2020 7. Salama t et al.,2017	\checkmark	\checkmark	Uncl ear	\checkmark	Uncl ear	×	Uncl ear	\checkmark	×	\checkmark	\checkmark	5/10
8. Wang et al.,2023	\checkmark	\checkmark		\checkmark		\checkmark		\checkmark	×	\checkmark	\checkmark	9/10
9. Bae et al.,2018	\checkmark	\checkmark	\checkmark	\checkmark	Uncl ear	Uncl ear	Uncl ear	\checkmark	×	\checkmark	\checkmark	6/10
10. Narou ei et al.,2020	\checkmark	\checkmark	Uncl ear	\checkmark	\checkmark	×	×	\checkmark	×	\checkmark	\checkmark	6/10
11. Franç a et al.,2012	\checkmark	\checkmark	\checkmark	\checkmark	Uncl ear	Uncl ear	Uncl ear	\checkmark	\checkmark	\checkmark	\checkmark	7/10
12. Sengu I et al., 2021	\checkmark	\checkmark	\checkmark	\checkmark	Uncl ear	Uncl ear	Uncl ear	\checkmark	×	\checkmark	\checkmark	6/10
13. Dann eels et al., 2001	\checkmark	\checkmark	Uncl ear	\checkmark	Uncl ear	Uncl ear	Uncl ear	\checkmark	\checkmark	\checkmark	\checkmark	6/10
14. Alp et al., 2014	\checkmark	\checkmark	\checkmark	\checkmark	×	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	8/10
15. Franc a et al., 2010	\checkmark	\checkmark	\checkmark	\checkmark	Uncl ear	Uncl ear	Uncl ear	\checkmark	\checkmark	\checkmark	\checkmark	7/10
16. Alrwai ly et al., 2019	\checkmark	\checkmark	\checkmark	\checkmark	×	×	×	\checkmark	×	\checkmark	\checkmark	6/10
17. Amiri et., 2022	\checkmark	\checkmark	\checkmark	\checkmark	×	×	Uncl ear	\checkmark	\checkmark	\checkmark	\checkmark	7/10
18. Nabav i et al., 2017	\checkmark	\checkmark	\checkmark	\checkmark	Uncl ear	×	×	\checkmark	\checkmark	\checkmark	\checkmark	7/10
19. Suh et al., 2019	\checkmark	\checkmark	\checkmark	\checkmark	×	×	\checkmark	\checkmark	×	\checkmark	\checkmark	7/10
20. Ahma dizadeh et	\checkmark	\checkmark	\checkmark	\checkmark	×	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	8/10
21. Guthri e et al., 2012	\checkmark	\checkmark	\checkmark	\checkmark	×	×	\checkmark	\checkmark	×	\checkmark	\checkmark	7/10
22. Kwon et al., 2020	\checkmark	\checkmark	Uncl ear	\checkmark	Uncl ear	Uncl ear	Uncl ear	\checkmark	\checkmark	\checkmark	\checkmark	6/10
23. Hosse inifar et al., 2013	\checkmark	\checkmark	Uncl ear	\checkmark	Uncl ear	Uncl ear	Uncl ear	\checkmark	×	\checkmark	\checkmark	5/10
24. Ehsan i et al, 2020	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	9/10
25. Ulger et al., 2020	\checkmark	\checkmark	\checkmark	\checkmark	Uncl ear	Uncl ear	Uncl ear	\checkmark	×	\checkmark	\checkmark	6/10
26. Chan et al., 2020	\checkmark	\checkmark	\checkmark	\checkmark	×	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	8/10

Table 2 PEDro scale for each study

4.2 Findings of major characteristics of included studies

This study found that the controversy persists regarding whether CST can more effectively enhance pain relief, trunk muscular endurance, core muscle thickness, and activation compared to alternative treatments, despite its similarity to resistance exercises for knee and hip muscles and progressive back extensor training. Nevertheless, CST demonstrates superior efficacy in enhancing trunk muscle strength compared to other interventions.

4.2.1 Articles on CST improving low back pain in adults

In terms of improvement in pain intensity, eight studies showed that CST was more effective than other exercise therapies(Ehsani et al., 2019; França et al., 2012; Hosseinifar et al., 2013; Kwon et al., 2020; Mendes et al., 2022; Salik Sengul et al., 2021; Sipaviciene & Kliziene, 2020; Suh et al., 2019). One study was an excellent quality study, five studies were good quality studies, and two studies were fair quality studies. Ten studies, however, concluded that CST had no advantage over other exercise therapies in improving pain(Ahmadizadeh et al., 2020; Alp et al., 2014; Amiri et al., 2022; Areeudomwong & Buttagat, 2019; Bae et al., 2018; Franca et al., 2010; Nabavi et al., 2018; Salamat et al., 2017; Ulger et al., 2023; Wang et al., 2022). Three of the studies were excellent quality studies, six were good quality studies, and one was a fair quality study. In addition, one high-quality study showed that CST was more effective than passive therapy in improving lower back pain(Narouei et al., 2020).

4.2.2 Articles on CST improving trunk muscular endurance in adults

In terms of improving trunk muscular endurance, two good-quality studies showed that CST was more effective than other exercise therapies(Alp et al., 2014; Salik Sengul et al., 2021). However, two good-quality studies showed that CST was less effective than Flexibar exercise, walking exercise, and stabilization with walking(Amiri et al., 2022; Suh et al., 2019).

4.2.3 Articles on CST improving core muscle thickness in adults

Regarding improving core muscle thickness or cross-sectional area, four studies showed that CST was more effective than other exercise therapies(Ehsani et al., 2020; Hosseinifar et al., 2013; Narouei et al., 2020; Sipaviciene & Kliziene, 2020). One study was an excellent-quality study, one was a good-quality study, and two were fair-quality studies. However, three studies concluded that CST was not superior to other exercise therapies(Kwon et al., 2019; Nabavi et al., 2018; H. Wang et al., 2023). One study was an excellent-quality study, and two studies were good-quality studies. In addition, one good-quality study showed that muscle dimensions of TrA and multifidus increased after CST intervention(Nabavi et al., 2018).

4.2.4 Articles on CST improving core muscle fatigue in adults

In terms of improving core muscle fatigue, two good-quality studies have shown that CST has no advantage over other exercise therapies in improving core muscle fatigue(Cai et al., 2017; Mendes et al., 2022).

4.2.5 Articles on CST improving core muscle activation in adults

In terms of improving core muscle activation, six studies have shown that CST is more effective than other exercise therapies(Ahmadizadeh et al., 2020; Areeudomwong & Buttagat, 2019; Franca et al., 2010; França et al., 2012; Kwon et al., 2020; Ulger et al., 2023), one of which was an excellent quality study, and the others were good quality studies. However, two studies have concluded that there is no advantage of CST over other exercise therapies(Areeudomwong & Buttagat, 2019; Cai et al., 2017), one of which was an excellent quality study.

4.2.6 Articles on CST improving trunk muscle strength in adults

In terms of improving muscle strength, one good quality study showed that CST was more effective in increasing trunk muscle strength in individuals with LBP relative to a usual exercise routine (Mendes et al., 2022).

5.0 Discussion

For this systematic review, 26 RCTs were identified that compared CST with at least one control group; 7 of them had extended followup. The overall quality of the trials was moderate, with 23 publications receiving a PEDro score of 6 at least. Only studies with clearly specified CST as the major treatment were included after a considerable number of prospective studies were removed.

5.1 Effects of CST on pain intensity, trunk muscular endurance, core muscle thickness and fatigue among adults with low back pain Regarding Effects of CST on pain intensity, trunk muscular endurance, core muscle thickness and fatigue among adults with low back pain, the results of the present study suggest that the results of different previous studies are not consistent. Although 22 studies have shown that CST can be more effective in improving pain intensity, trunk muscular endurance, core muscle thickness or fatigue in patients with CLBP to varying degrees relative to other therapies, 20 studies have disagreed. These indicated that it is still controversial whether CST can better improve pain, trunk muscular endurance, core muscle thickness and *fatigue* than other exercise therapies. The reason may be related to the different CST intervention methods used in different studies, or it may be related to the different applicability of CST to different age groups. Exercise therapy, particularly active exercise therapy, is recognised as an effective treatment for CLBP, providing over 20% pain relief and improving function by up to 23% (Hayden et al., 2020). CST, Pilates exercises, motor control, resistance exercise and aerobic exercise are the right choices for pain relief and improved function (Nascimento et al., 2018; Eliks et

al.,2019; Owen et al.,2019). However, it is often difficult to determine the optimal form of exercise because of the wide variety of exercise methods and individual differences. It has been suggested that the choice of exercise should be based on individual preferences and abilities (Malfliet et al., 2019).

5.2 Effects of CST on core muscle strength and Activation among Adults with low back pain

According to the findings, CST is more advantageous than other exercise therapies in improving core muscle strength, and activation in patients with LBP. The reason for this could be that CST is typically performed on unsteady planes. Compared with other exercise therapies, it can stimulate and activate the small, deep muscle groups of the patient's trunk more effectively, thereby enhancing core muscle strength. Studies have confirmed that trunk muscular weakness, profound trunk muscle weakness has been linked to persistent LBP in studies (Wang et al., 2022). This may increase the risk of lumbar spine instability, additional spine damage, and, eventually, diminished physical activity. CST is a standard method for recovering trunk muscle functioning and achieving optimal lumbar stability throughout regular activities (Mohammadi et al., 2023).

5.3 Strengths of the study

This study is the first systematic review to explore the effect of CST on improving muscle physiology in patients with CLBP. The PEDro scale was utilized for quality assessments.

5.4 Clinical Implications

The results of this study can be used in clinical exercise therapy especially core stabilisation training for the treatment of chronic low back pain. It serves as a valuable reference for both low back pain patients and clinical workers in optimizing treatment plans, as well as aiding health system institutions in developing clinical guidelines for low back pain.

5.5 Future research

Future research should look into other factors such as functional performance, quality of life, disability, fear avoidance, global improvement, costs, and return to employment, and should concentrate on standardizing CST intervention procedures and determining the appropriate age group for CST treatment in patients with LBP.

6.0 Conclusion & Recommendations

This study has several limitations. First, only research written in English and published as full papers were considered, and no unpublished articles were searched. Second, only RCT studies on CST for the treatment of CLBP were included. Third, in terms of trial quality, several publications needed more information to assess the data's quality and clinical significance. Furthermore, relatively few research have looked at the long-term implications of CST in the treatment of CLBP.

This review revealed that relative to other exercise treatments, for LBP patients, CST was more efficacious in improving core muscle strength and activation, but CST did not have an advantage in improving core muscle fatigue, whereas the efficacy of CST in improving pain, trunk muscle endurance, and core muscle thickness is still controversial.

Based on the results of this study, the clinical use of CST is recommended to improve muscle physiology in patients with CLBP, especially in terms of improving core muscle strength and the degree of core muscle activation. The efficacy of CST in combination with other active exercise therapies in improving muscle physiology and function in CLBP patients should be further explored in the future through multicentre, large-sample clinical randomised trials.

Acknowledgment

We thank the discipline construction project by Minzu Normal University of Xingyi, China, for their financial support and the Grant GIP (SKJS202339SKJS202339). We also acknowledge the Journal Support Fund from institute of post graduate studies(IPSis) of Universiti Technologi MARA(Fund Code: 250001040001).

Paper Contribution to Related Field of Study

Provides a reference for the clinical optimization of LBP treatment prescriptions and efficient improvement of pain and muscle physiology in patients with CLBP.

References

Amiri, F., Mohsen Roostayi, M., Naimi, S. S., & Akbarzadeh Baghban, A. (2022). Stabilization Exercises versus Flexi-Bar Exercises in Chronic Non-Specific Low Back Pain: Pain, Disability, Back Muscles Endurance. A Randomized Controlled Trial. Muscle Ligaments and Tendons Journal, 12(04), 604. Areeudomwong, P., & Buttagat, V. (2019). Comparison of Core Stabilisation Exercise and Proprioceptive Neuromuscular Facilitation Training on Pain-related and Neuromuscular Response Outcomes for Chronic Low Back Pain: A Randomised Controlled Trial. The Malaysian Journal of Medical Sciences : MJMS, 26(6), 77–89.

Czaprowski, D., Stoliński, Ł., Tyrakowski, M., Kozinoga, M., & Kotwicki, T. (2018). Non-structural misalignments of body posture in the sagittal plane. Scoliosis and Spinal Disorders, 13(1).

Ferreira, M. L., Katie de Luca, Haile, L. M., Steinmetz, J. D., Culbreth, G. T., Cross, M., Kopec, J. A., Ferreira, P. H., Blyth, F. M., Buchbinder, R., Hartvigsen, J., Wu, A.-M., Saeid Safiri, Woolf, A., Collins, G. S., Ong, K. L., Stein Emil Vollset, Smith, A. E., Cruz, J. A., & Kai Glenn Fukutaki. (2023). Global, regional, and national burden of low back pain, 1990–2020, its attributable risk factors, and projections to 2050: a systematic analysis of the Global Burden of Disease Study 2021. The Lancet Rheumatology, 5(6), e316–e329.

Frizziero, A., Pellizzon, G., Vittadini, F., Bigliardi, D., & Costantino, C. (2021). Efficacy of Core Stability in Non-Specific Chronic Low Back Pain. Journal of Functional Morphology and Kinesiology, 6(2), 37.

Georgios Kakavas, Giannakopoulos, I., Αθανάσιος Τσιόκανος, Potoupnis, M., & Panagiotis Tsaklis. (2023). The Effect of Ball Heading and Subclinical Concussion On the Neuromuscular Control Of The Lower Limb: A Systematic Review. The International Journal of Sports Physical Therapy, 18(5).

Ghafouri, M., Ghasemi, E., Rostami, M., Mahtab Rouhifard, Rezaei, N., Nasserinejad, M., Khashayar Danandeh, Amin Nakhostin-Ansari, Ghanbari, A., Alireza Borghei, Amiri, A., Azin Teymourzadeh, Taylor, J. B., Moghadam, N., & Ramin Kordi. (2023). The quality of care index for low back pain: a systematic analysis of the global burden of disease study 1990–2017. Archives of Public Health, 81(1).

Ghamkhar, L., & Kahlaee, A. H. (2019). The effect of trunk muscle fatigue on postural control of upright stance: A systematic review. Gait & Posture, 72, 167–174.

Hayden, J. A., Wilson, M. N., Stewart, S., Cartwright, J. L., Smith, A. O., Riley, R. D., van Tulder, M., Bendix, T., Cecchi, F., Costa, L. O. P., Dufour, N., Ferreira, M. L., Foster, N. E., Gudavalli, M. R., Hartvigsen, J., Helmhout, P., Kool, J., Koumantakis, G. A., Kovacs, F. M., & Kuukkanen, T. (2020). Exercise treatment effect modifiers in persistent low back pain: an individual participant data meta-analysis of 3514 participants from 27 randomised controlled trials. British Journal of Sports Medicine, 54(21), 1277–1278.

Hemming, R., Sheeran, L., van Deursen, R., & Sparkes, V. (2019). Investigating differences in trunk muscle activity in non-specific chronic low back pain subgroups and no-low back pain controls during functional tasks: a case-control study. BMC Musculoskeletal Disorders, 20(1).

Kamel, E., Abdelmajeed, S., El Khozamy, H., & Hassan, K. (2021). Trunk and hip muscles activation patterns in subjects with and without chronic low back pain: a systematic review. Physiotherapy Quarterly, 29(2), 79-88.

Khodadad, B., Letafatkar, A., Hadadnezhad, M., & Shojaedin, S. (2019). Comparing the Effectiveness of Cognitive Functional Treatment and Lumbar Stabilization Treatment on Pain and Movement Control in Patients With Low Back Pain. Sports Health, 12(3), 289–295.

Kwon, S. H., Oh, S. J., & Kim, D. H. (2019). The effects of lumbar stabilization exercise on transversus abdominis muscle activation capacity and function in low back pain patients. Isokinetics and Exercise Science, 28(2), 1–6.

Mohamad Chan, E. W., Md Nadzalan, A., Othman, Z., Hafiz, E., & A. Hamid, M. S. (2020). The Short-Term Effects of Progressive vs. Conventional Core Stability Exercise in Rehabilitation of Nonspecific Chronic Low Back Pain. Sains Malaysiana, 49(10), 2527–2537.

Mohammadi, V., Letafatkar, A., Amir, A., & Jafarnezhadgero. (2023). Number 1. Physical Treatments. PTJ, 13(1), 55-66.

Owen, P. J., Miller, C. T., Mundell, N. L., Verswijveren, S. J., Tagliaferri, S. D., Brisby, H., Bowe, S. J., & Belavy, D. L. (2019). Which specific modes of exercise training are most effective for treating low back pain? Network meta-analysis. British Journal of Sports Medicine, 54(21), 1279–1287.

Paez, A. (2017). Gray literature: an Important Resource in Systematic Reviews. Journal of Evidence-Based Medicine, 10(3), 233-240.

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., & McGuinness, L. A. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Systematic Reviews, 10(1).

Rique, P., Gomes, S. R. A., Costa, L. D. O., Liguori, L., L C C Bulhões, & Brasileiro, J. S. (2022). Core stabilisation exercises reduce chronic low back pain in Air Force fighter pilots: a randomised controlled trial. PubMed, e002005–e002005.

Salik Sengul, Y., Yilmaz, A., Kirmizi, M., Kahraman, T., & Kalemci, O. (2021). Effects of stabilization exercises on disability, pain and core stability in patients with non-specific low back pain: A randomized controlled trial. Work, 70(1), 1–9.

Stochkendahl, M. J., Kjaer, P., Hartvigsen, J., Kongsted, A., Aaboe, J., Andersen, M., Andersen, M. Ø., Fournier, G., Højgaard, B., Jensen, M. B., Jensen, L. D., Karbo, T., Kirkeskov, L., Melbye, M., Morsel-Carlsen, L., Nordsteen, J., Palsson, T. S., Rasti, Z., Silbye, P. F., & Steiness, M. Z. (2017). National Clinical Guidelines for non-surgical treatment of patients with recent onset low back pain or lumbar radiculopathy. European Spine Journal, 27(1), 60–75.

Ulger, O., Oz, M., & Ozel Asliyuce, Y. (2023). The Effects of Yoga and Stabilization Exercises in Patients With Chronic Low Back Pain: A Randomized Crossover Study. Holistic Nursing Practice, 37(4), E59.

Wang, H., Zheng, J., Fan, Z., Luo, Z., Wu, Y., Cheng, X., Yang, J., Zhang, S., Yu, Q., Lo, W. L. A., & Wang, C. (2022). Impaired static postural control correlates to the contraction ability of trunk muscle in young adults with chronic non-specific low back pain: A cross-sectional study. Gait & Posture, 92, 44–50.

		APPENDIX A: Search strategy
Database	Э	String Used
Pubmed		((((((((((core stabilization exercise[Title/Abstract]) OR (core stabilization training[Title/Abstract])) OR (core stability exercise[Title/Abstract])) OR (core stability training[Title/Abstract])) OR (stability exercise[Title/Abstract])) OR (stabilization training[Title/Abstract])) OR (stability training[Title/Abstract])) OR (stability exercise[Title/Abstract])) OR (stabilization training[Title/Abstract])) OR (stabilization exercise[Title/Abstract])) OR (stability[Title/Abstract])) OR (stabilization[Title/Abstract])) OR (stabilization exercise[Title/Abstract])) OR (stabilization[Title/Abstract])) OR (stabilization[Title/Abstract])) OR (more control[Title/Abstract])) AND (((((()) back pain[MeSH Terms]) OR (lumbar pain[MeSH Terms])) OR (sciatica[MeSH Terms])) OR (lower back pain[Title/Abstract])) OR (back pain[Title/Abstract])) OR (core stabilization[Title/Abstract])) OR (back pain[Title/Abstract])) OR (back pain[Title/Abstract])) OR (core stabilization[Title/Abstract])) OR (core stabilization[Title/Abs
Web science	of	((((((((((TS=(core stabilization exercise)) OR TS=(core stabilization training)) OR TS=(core stability exercise)) OR TS=(core stability training)) OR TS=(stabilization training)) OR TS=(stabilization training)) OR TS=(stabilization exercise)) OR TS=(stabilization)) OR TS=(stabilization)) OR TS=(stabilization)) OR TS=(stabilization)) OR TS=(motor control)) AND (((((((((TS=(low back pain)) OR TS=(stabilization))) OR TS=(stabilization)) OR TS=(stabilization)) OR TS=(stabilization)) OR TS=(low back pain)) OR TS=(lumbar pain)) OR TS=(stabilization)) OR TS=(low back pain)) OR TS=(lumbar pain)) OR TS=(lumbar disc herniation)) OR TS=(intervertebral disc disease)) OR TS=(pelvic girdle pain)) OR TS=(LBP)) AND (((TS=(randomized controlled trial))) OR TS=(RCTS)) OR TS=(random allocation)) NOT (DT=(Review)) AND (LA=(English))
Scopus		(TITLE-ABS-KEY(core stabilization exercise) OR TITLE-ABS-KEY(core stabilization training) OR TITLE-ABS-KEY(core stability training) OR TITLE-ABS-KEY(stability training) OR TITLE-ABS-KEY(stability training) OR TITLE-ABS-KEY(stability training) OR TITLE-ABS-KEY(stability) OR TITLE-ABS-KEY(stability) OR TITLE-ABS-KEY(stabilization training) OR TITLE-ABS-KEY(stabilization exercise) OR TITLE-ABS-KEY(stabilization) OR TITLE-ABS-KEY(stabilization exercise) OR TITLE-ABS-KEY(stability) OR TITLE-ABS-KEY(stabilization) OR TITLE-ABS-KEY(lower back pain) OR TITLE-ABS-KEY(back pain) OR TITLE-ABS-KEY(backache) OR TITLE-ABS-KEY(lower back pain) OR TITLE-ABS-KEY(back pain) OR TITLE-ABS-KEY(backache) OR TITLE-ABS-KEY(intervertebral disc disease) OR TITLE-ABS-KEY(lower back pain) OR TITLE-ABS-KEY(lower back pain) OR TITLE-ABS-KEY(pelvic girdle pain) OR TITLE-ABS-KEY(LBP)) AND (TITLE-ABS-KEY(randomized controlled trial) OR TITLE-ABS-KEY(random allocation)) AND NOT (DOCTYPE(re)) AND (LANGUAGE(english))