Intervention Programmes among Obstructive Sleep Apnea Patients: A systematic review

Nurhazirah Razali1,2, Siti Khuzaimah Ahmad Sharoni1*, Siti Nor Ismalina Isa3, Septa Katmawanti4

* Corresponding Author: Siti Khuzaimah Ahmad Sharoni

1Centre for Nursing Studies, Faculty of Health Sciences, Universiti Teknologi MARA, 42300 Puncak Alam, Selangor, Malaysia
2Nursing Unit, Institute of Respiratory Medicine, Jalan Pahang, 50590 Kuala Lumpur, Malaysia
3Department of Basic Sciences, Faculty of Health Sciences, Universiti Teknologi MARA Selandar, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
4Department of Public Health, Faculty of Sport Science, Universitas Negeri Malang, Malang, Indonesia

Abstract

Aims: To assess the effectiveness of intervention programs to improve functional outcomes, continuous positive airway pressure (CPAP) adherence, daytime sleepiness, and knowledge among obstructive sleep apnea (OSA) patients. Background: Oxygen desaturations, awakenings, and snoring are symptoms of OSA. Design: Through five databases such as Google Scholar, Science Direct, Web of Science, Medline, and Research Gate. Conclusions: Patients improved their knowledge; CPAP compliance was higher in the intervention group compared to the control group. Regular CPAP utilization can improve functional outcomes and reduce daytime sleepiness. Implication for practice: researchers need to develop educational initiatives appropriate for OSA patients in Malaysia.

Keywords: Obstructive sleep apnea; Intervention programs; Continuous positive airway pressure.

1.0 Introduction

1.1 Obstructive Sleep Apnea (OSA)

Obstructive sleep apnea (OSA) is a result from repeated obstruction of the upper airway due to the relaxation of the pharyngeal and tongue muscles during sleep (Theerakittikul et al., 2022). Consequent oxygen desaturation, increased inspiratory effort, sleep fragmentation, and arousal from sleep lead to excessive daytime sleepiness, cardiovascular and metabolic diseases, cognitive and memory impairments, and mood disorders (Rapelli et al., 2021). Screening for OSA is performed using questionnaires that ask about OSA symptoms and sometimes include clinical factors such as body mass index, neck circumference, and blood pressure (Rapelli et al., 2021). Patients have some options for the management of OSA. Continuous positive airway pressure (CPAP), oral appliances, surgical procedures, and lifestyle changes are among the management options for OSA. Nonetheless, the preferred course of treatment
for OSA syndrome is CPAP therapy (Theerakittikul et al., 2022). An individual needs to seek advice from a physician and get treatment if suspecting of suffering from OSA because their life really could depend on it.

1.2 Continuous Positive Airway Pressure (CPAP)

Continuous positive airway pressure is also known as CPAP. In order to splint open and maintain patency of the upper airways during the inspiratory and expiratory phases of breathing, involves the use of an airflow generator, which consistently produces pressurized air (Campbell & Sapra, 2023). Patients need to use a CPAP machine when sleeping. The main treatment for OSA is a positive airway pressure device, which maintains the airway with compressed air. It is also advised that patients with obesity and overweight lose weight (Mangione et al., 2022). Even though CPAP devices are the gold standard treatment for OSA patients but in this study, the main problem with CPAP treatment is poor compliance among patients.

1.3 Problem statement

The prevalence of obstructive sleep apnea (OSA) appears to be rising, which could be attributed to rising obesity or OSA detection rates. It is estimated that OSA affects about 1 billion of the 7.3 billion people in the world between the ages of 30 and 69 (Mangione et al., 2022). African Americans have been reported as having a higher risk for OSA when compared to Asian, Indian, Hispanic, and European ancestry (Dudley, 2015). In Asia countries, the prevalence of OSA ranged from 7.8% (Hong Kong) to as high as 77.2% (Malaysia) for mild OSA (Lyons et al., 2020). OSA prevalence is rising and affects all countries, including Malaysia. The increase in prevalence is driven by the global increase in obesity, the major risk factor for OSA (Lyons et al., 2020).

Health consequences of OSA range from daytime sleepiness, decreased productivity, and increased risk of traffic accidents. While in the long term, OSA increases the risk of metabolic disorders, cardiovascular diseases, impaired cognition, and premature mortality (Theerakittikul, 2022). In addition, patients also get a sleep pattern disorder where they cannot sleep at night or do not get enough sleep. They also have problems managing their daily lives due to the absence of a partner, income, and unemployment (Batool-Anwar et al., 2016). Recurrent airway obstruction may have vascular consequences that raise the risk of erectile dysfunction (ED) and cause a loss of intimacy in a marriage or long-term relationship, which can have an impact on both partners’ mental health (Pascual et al., 2018).

1.4 Objective

This review was performed to assess the effectiveness of intervention programs to improve functional outcomes, continuous positive airway pressure (CPAP) adherence, daytime sleepiness, and knowledge among obstructive sleep apnea patients.

2.0 Literature Review

Data sources and literature search strategy

A literature review was conducted with the following search engines and databases such as Google Scholar, Science Direct, Web of Science, Medline, and Research Gate to find publications that were published between 2018 and 2023. Only the English language is available for search terms. The inclusion criteria and keywords intervention programs, “obstructive sleep apnea,” and “Continuous positive airway pressure” were used in the search. In the last phase, seven studies were evaluated and reviewed. There were relatively limited articles on obstructive sleep apnea in nursing journals; therefore, the search process was extended to healthcare, medical, and health education journals.

3.0 Methods

3.1 Inclusion criteria

The following criteria were used for inclusion:

3.1.1 Types of study

- Intervention studies (e.g., randomized control trials)
- True experimental study
- Intervention programs in relation to obstructive sleep apnea
- Programs involved with or without a control group
- Articles published in nursing, healthcare, medical, or health education journals

3.1.2 Types of participants

Patients with obstructive sleep apnea

3.1.3 Types of intervention

- Intervention programs that included teaching, education, and training
- Discussion, demonstration, and assessment
- The programs conducted by medical personnel

378
Table 1: Literature summary of the intervention programs

<table>
<thead>
<tr>
<th>Title</th>
<th>Author, Country</th>
<th>Design</th>
<th>Sample size/groups no</th>
<th>Program/ intervention types</th>
<th>Duration and follow-up</th>
<th>Outcome measures, tools</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Culturally tailored, peer-based sleep health education and social support to increase obstructive sleep apnea assessment and treatment adherence among a community sample of blacks</td>
<td>Razali, N., et al.</td>
<td>Randomized controlled trial</td>
<td>398</td>
<td>Participants at risk of OSA will receive quality controlled, culturally, and linguistically tailored peer education based on Motivational Enhancement principles. Participants are encouraged to participate in a sleep home study to determine the risk of OSA and, if found to be at risk, they are invited to undergo a diagnostic sleep assessment at a clinic. Participants who are diagnosed with OSA and who are prescribed continuous positive airway pressure treatment will be encouraged, through peer-based education, to adhere to the recommended treatment.</td>
<td>12 months</td>
<td>Epworth sleepiness scale, Apnea Knowledge Test, Apnea Beliefs Scale</td>
<td>72% of the patients were adherent to CPAP treatment after two weeks and six months. All patients improved their baseline knowledge about OSA and CPAP after two weeks and sustained it after six months.</td>
</tr>
</tbody>
</table>

A mixed method evaluation of a group-based educational program for CPAP use in a community sample of blacks

<table>
<thead>
<tr>
<th>Title</th>
<th>Author, Country</th>
<th>Design</th>
<th>Sample size/groups no</th>
<th>Program/ intervention types</th>
<th>Duration and follow-up</th>
<th>Outcome measures, tools</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>A mixed method evaluation of a group-based educational program for CPAP use in a community sample of blacks</td>
<td>Seixas et al. (2018)</td>
<td>Randomized controlled trial</td>
<td>25 patients.</td>
<td>The problem-based learning (PBL) program incorporated elements from theories and models concerning variables, motivation and habits. Tutorial groups, consisting of four to eight patients met at baseline, after two weeks and six months.</td>
<td>Six months</td>
<td>Epworth sleepiness scale, Apnea Knowledge Test, Apnea Beliefs Scale</td>
<td>72% of the patients were adherent to CPAP treatment after two weeks and six months. All patients improved their baseline knowledge about OSA and CPAP after two weeks and sustained it after six months.</td>
</tr>
</tbody>
</table>
Results

The mean (standard deviation) apnea/hypopnea index was 45 ± 22, the Epworth Sleepiness Scale score was 14 ± 5, and the average titration pressure was 10 ± 2 cm H2O. At three months, 166 patients (82%) used CPAP for an average of 7.3 hours per night. At one year, 162 (80%) used CPAP for about seven hours per night. At two years, 92 patients (43%) used CPAP for about five hours per night. The level of satisfaction remained higher in patients in ventilation. At three months, CPAP adherence was 82%. Adherence to CPAP was 80% at one year; two years after, adherence to ventilation was 43%. Strong adherence to CPAP at three months and one year, with a decrease at two years. Daytime sleepiness was 6 ± 4 at three months and 5 ± 4 at one and two years.

<table>
<thead>
<tr>
<th>Title</th>
<th>Author, Country</th>
<th>Design</th>
<th>Sample size/groups no</th>
<th>Program/ intervention types</th>
<th>Duration and follow-up</th>
<th>Outcome measures, tool</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-term adherence to CPAP treatment in patients with obstructive sleep apnea: Importance of educational program</td>
<td>La Piana et al. (2011) Italy</td>
<td>Randomized controlled trial (RCT)</td>
<td>202 patients</td>
<td>The educational program consisted of three months and Epworth Sleepiness Scale (ESS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Educational Program Applied Correa et al. (2016) Brazil</td>
<td>Randomized controlled trial (RCT)</td>
<td>5</td>
<td>The knowledge multiplication strategies were comprised of the creation of the educational material and implementation of the training program (face-to-face classes, practical activity, access to the Cybertutor, and social action). Next, an assessment was performed by applying the investigation questionnaire of the level of knowledge and the Motivational Research Form.</td>
<td>Level of knowledge and the Motivational Research Form post-shows an increase of the score was observed for all questions showing increasing knowledge. The significance level used was p<0.05.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Author, Country</td>
<td>Design</td>
<td>Sample size/group(s)</td>
<td>Program/ intervention types</td>
<td>Duration and follow-up</td>
<td>Outcome measures, tool</td>
<td>Results</td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>--------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Improving CPAP Compliance by a Basic Educational Program with Nurse Support for Obstructive Sleep Apnea Syndrome Patients</td>
<td>Rita et al. (2008) Brazil</td>
<td>Experimental</td>
<td>95 OSA patients</td>
<td>The program provided information and training, supported by video sessions, 30 days, 60(ESS) days, and 90 days.</td>
<td>At 7 days, 15 Epworth Sleepiness Scale</td>
<td>CPAP compliance was significantly higher in the educational program compared with the control group (71 vs. 56%, p=0.02; and 6.3±1.9 vs. 5.1±1.7 hrs/night, respectively, p=0.01) on the 90th day. In the educational program group, regular CPAP users had lower ESS scores after 90 days of CPAP therapy compared with irregular users (7.1±4.9 vs. 10.2±5.3, respectively; p=0.007).</td>
<td></td>
</tr>
</tbody>
</table>

| | Theerakittikul (2022) Thailand | Randomized controlled trial (RCT) | 50 patients | CPAP health education, multilevel mixed effects modeling approaches | Baseline, month, and months. | Sleep quality, daytime sleepiness and daytime(2022) (FOSQ) | 3-FPS Questionnaire study. Approximately 53% (n=25) and 71.1% (n=27) of the patients adhered to Epworth Sleepiness Scale CPAP treatment by the end of the 1- and 3-months, respectively. After controlling for patients' adherence, at 1-month follow-up, the intervention improved the quality of sleep (β 5 2.65, 95% CI 1.60, 3.71), daytime functioning (β 5 3.24, 95% CI 2.67, 3.81) and decreased daytime sleepiness (β 5 1.85, 95% CI 1.65, 2.05). At three months, the intervention still improved the quality of sleep (β 5 2.05, 95% CI 1.60, 2.50) and daytime functioning (β 5 1.87, 95% CI 1.52, 2.22) and decreased daytime sleepiness (β 5 1.40, 95% CI 1.20, 1.60). CPAP adherence at the 1-month follow-up was quite low compared to at three months. The results showed that at 1-month follow-up, there were no statistically significant differences in all outcomes between the two groups. However, at 3-month follow-up, participants in the adherence group had better sleep quality scores (p < 0.01). |
Results

Regular CPAP utilization has been reported to improve sleep quality, daily functioning, and overall quality of life. The mean score of FOSQ at baseline was 13.1 and significantly increased to 16.9 at one month and 18.6 at the end of the study (trend p < 0.001).

At the baseline, 52% (n=526) of the participants reported excessive daytime sleepiness; this proportion significantly dropped to 20.4% (n 510) after one month of CPAP utilization and 15.4% (n 5 6) after three months (trend p < 0.001).

No effect on the quality of life (Functional Outcomes of Sleep Questionnaire (FOSQ), standardized mean difference (SMD) 0.00, 0.95% CI -0.26 to 0.26, N = 228).

Participants may experience small improvements in symptoms (ESS score -0.32 points, 95% CI -1.19 to 0.56, N = 470). Behavioral interventions reduce symptoms (ESS score -2.42 points, 95% CI -4.27 to -0.57, N = 272).

Supportive interventions increase device usage by 0.70 hours/night. Behavioral interventions produce a clinically meaningful increase in device usage by 1.31 hours/night.

<table>
<thead>
<tr>
<th>Title</th>
<th>Author, Country</th>
<th>Design</th>
<th>Sample size/groups no</th>
<th>Program/ intervention types</th>
<th>Duration and follow-up</th>
<th>Outcome measures, tool</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Educational, supportive, and Askland et al.</td>
<td>Randomized controlled trial (RCT) USA</td>
<td>9005 participants</td>
<td>Educational interventions were delivered six weeks, using a variety of techniques, including months, educational/situational videos, group months, education sessions, extended months, personalized explanations of months, polysomnography (PSG) reports and months, and positive/negative risk message framing months. Supportive interventions included telemonitoring under various formats and platforms, in-home tutorials and extended follow-up visits, peer support, phone support, and personalized web-based support platforms. Behavioral studies: Motivational Enhancement Therapy (MET) aimed at resolving ambivalence towards treatment, a combination of various motivational strategies, habit-promoting audiobooks, and myofunctional therapy. Mixed class used a combination of educational materials (videos, brochures, tutorials) and support systems (telemedicine or extended follow-up) in their active intervention.</td>
<td>Epworth Sleepiness Scale (ESS)</td>
<td>Functional Outcomes of Sleep Questionnaire (FOSQ), standardized mean difference (SMD) 0.00, 0.95% CI -0.26 to 0.26, N = 228. Participants may experience small improvements in symptoms (ESS score -0.32 points, 95% CI -1.19 to 0.56, N = 470). Behavioral interventions reduce symptoms (ESS score -2.42 points, 95% CI -4.27 to -0.57, N = 272). Supportive interventions increase device usage by 0.70 hours/night. Behavioral interventions produce a clinically meaningful increase in device usage by 1.31 hours/night.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.2 Exclusion criteria
The studies were excluded from the review in the case of the following:
- Studies related to diagnostic instruments, clinical, and other designs (e.g., qualitative, non-experimental, systematic review, meta-analysis, and case reports
- Participants among healthcare providers
- Articles published in another field (apart from nursing, healthcare, medical, and education journals)

4.0 Result

4.1 Types of programs
Referring to Table 1, there are seven studies regarding OSA and intervention programs. Of these studies, five studies are randomized controlled trials (RCT) (Seixas et al., 2018; La Piana et al., 2011; Correa et al., 2016; Askland et al., 2020; Theerakittikul, 2022), one study is a true experimental (Rita et al., 2008) and one study is a sequential explanatory mixed method (Brostrom et al., 2013). Most of the studies use the apnea knowledge test (AKT) to measure the level of knowledge, the functional outcomes of sleep questionnaire (FOSQ) to measure functional outcomes, and Epworth sleepiness scale (ESS) to measure daytime sleepiness. The result shows all studies have a positive effect on CPAP adherence and knowledge. Four studies show the intervention program can reduce daytime sleepiness among OSA patients (La Piana et al., 2011; Rita et al., 2008; Askland et al., 2020; Theerakittikul, 2022).

4.2 Setting and Sample
The studies were conducted in five countries: two studies were conducted in the United States (Seixas et al., 2018; Askland et al., 2020), two studies in Brazil (Rita et al., 2008; Correa et al., 2016) and one each in Thailand (Theerakittikul, 2022), Italy (La piana et al., 2011), and Sweden (Brostrom et al., 2013). Six studies were conducted in the healthcare setting (e.g., clinic and hospital) (La Piana et al., 2011; Correa et al., 2016; Askland et al., 2020; Brostrom et al., 2013; Rita et al., 2008; Theerakittikul, 2022). One study was conducted both in the participants’ homes and in the healthcare setting. That is, after the participants participate in a home sleep study, they are invited to undergo a diagnostic sleep assessment at the clinic, and education was given (Seixas et al., 2018). Three studies were conducted in groups (Seixas et al., 2018; Brostrom et al., 2013; Askland et al., 2020). Four studies were conducted by one-to-one approach (La Piana et al., 2011; Correa et al., 2016; Rita et al., 2008; Theerakittikul, 2022). One study reported that the program provided information and training, supported by video sessions and outpatient visits for the intervention group, while the control group did not receive any information or training, then both groups were evaluated at each visit (Rita et al., 2008). Six studies did not mention control groups (Seixas et al., 2018; La Piana et al., 2011; Correa et al., 2016; Askland et al., 2020; Brostrom et al., 2013; Theerakittikul, 2022).

4.3 Duration, follow-up and evaluation
All studies did not report the duration of teaching (Seixas et al., 2018; La Piana et al., 2011; Correa et al., 2016; Askland et al., 2020; Brostrom et al., 2013; Rita et al., 2008; Theerakittikul, 2022). The time of follow-up and evaluation varied across the studies. One study was assessed at the baseline and 12 months (Seixas et al., 2018), one study at six weeks, two months, three months, four months, six months, 12 months, and 24 months (Askland et al., 2020), one study at baseline, after two weeks and six months (Brostrom et al., 2013), one study at baseline, 1-month, and 3-months (Theerakittikul, 2022), one study at 7, 15, 30, 60 and 90 days after CPAP initiation (Rita et al., 2008).
et al., 2008), one study at three months and one year (La Piana et al., 2011), while one study did not mention regarding the duration and timeline (Correa et al., 2016). A significant variation in the time interval from the baseline to the study end was observed among the studies. The shortest time of evaluation was one week (Rita et al., 2008), and the longest evaluation period was two years (Askland et al., 2020).

4.4 Outcome measures
Outcomes measured in these articles included knowledge, functional outcomes, CPAP adherence, and daytime sleepiness. The instruments used to measure the outcome varied across the studies. Functional outcomes of sleep questionnaire (FOSQ) were used to assess functional outcomes (Theerakittikul, 2022; Askland et al., 2020). Epworth sleepiness scale (ESS) was used to assess daytime sleepiness (Seixas et al., 2018; La Piana et al., 2011; Rita et al., 2008; Theerakittikul, 2022; Askland et al., 2020). Apnea knowledge test to assess knowledge among OSA patients (Seixas et al., 2018; Brostom et al., 2013; Correa et al., 2016).

5.0 Discussion
5.1 Types of programme
This review assessed seven studies from various types of intervention designs: RCTs and true experimental studies. Nevertheless, the studies also provided relevant information on the effectiveness of the intervention programs. Studies either focused specifically on education program, motivation, or training. All intervention programs were delivered by personnel trained in the research field. The advantage of this strategy is the prevention of observer bias and the provision of quality information. However, the person delivering the program may be from a different background, although most of the providers were medical and health science certified. The types of intervention program in the studies reviewed varied. The researchers conducted the program based on their own research objective and design. Some studies were conducted in the hospital and clinic. The intervention programs were delivered in a group session or one-to-one through education, training, video sessions, and discussions (Seixas et al., 2018; La Piana et al., 2011; Correa et al., 2016; Askland et al., 2020; Brostom et al., 2013; Rita et al., 2008; Theerakittikul, 2022).

5.2 Setting and Sample
Some studies reviewed in this article involved more than one group in their program. Some of the control groups received different interventions than the intervention group. Furthermore, some studies had different time intervals between the follow-up and the evaluation depending on the study objectives and strategies. This may have influenced the impact of the programs. Another issue was bias, as the methods and approaches used in the different interventions affected the outcomes, especially when the programs involved multiple strategies (FitzGerald et al., 2019).

5.3 Duration of follow-up and evaluation
In the reviewed studies, differences were observed in the duration between the follow-up and the evaluation depending on the study objectives and outcome measures of the researchers. Askland et al. (2020) conducted a 2-year study to assess the functional outcome and daytime sleepiness. In the study by Rita et al. (2008), daytime sleepiness was assessed as early as seven days of intervention. It is likely that this to prove that educational program does not shows big difference to outcomes, since OSA severity, age, and objective CPAP use at the beginning of 7th day were similar between both groups (experimental and control) (Rita et al., 2008).

5.4 Outcome measures
The instruments used to measure outcomes varied across the studies reviewed in this article. Most researchers used a questionnaire as their research tool. Self-reported questionnaires are prone to validity issues and misclassification and are less precise. Different instruments used to measure the same outcome may influence the outcome. The studies were recruited from several countries. The outcomes of the programs may have been slightly influenced by the differences in geographical and cultural backgrounds (Roosä et al., 2008).

6.0 Conclusion
Intervention programs differed in terms of design, setting, approach, outcome measurement, and results. Patients improved their knowledge about OSA and CPAP after the intervention programs. CPAP compliance was significantly higher in the intervention program group compared with the control group, and regular CPAP utilization has been reported to improve sleep quality, functional outcomes, overall quality of life, and reduce daytime sleepiness. However, owing to different methodological approaches, populations, settings, outcomes measured, follow-up and evaluation, the findings need to be taken into consideration. The results of this study provide credence to the idea that an intervention program improves knowledge, CPAP adherence, sleep quality, functional outcomes, overall quality of life, and reduces daytime sleepiness. Nonetheless, a few methodological issues were raised in the evaluated papers, suggesting that more analysis is required. In the future, educators and researchers need to develop educational initiatives that are appropriate for Malaysian patients suffering from obstructive sleep apnea. The previous finding shows the increasing cases of OSA in Malaysia but there is no published educational/ intervention program is conducted in Malaysia among OSA patients. To the best of researcher knowledge, there is no study conducted in Malaysia that can prove educational/intervention program improves functional
outcomes, CPAP adherence, daytime sleepiness, and knowledge between the intervention and control group among obstructive sleep apnea patients before and after intervention program. In future, researcher want to have some new findings related to the intervention program and OSA in Malaysia.

Contributions
Study design: NR, SKAS, SNII, SK; data collection and analysis: NR, SKAS, SNII, SK; and manuscript preparation: NR, SKAS, SNII, SK.

References

List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPAP</td>
<td>Continuous Positive Airway Pressure</td>
</tr>
<tr>
<td>AHI</td>
<td>Apnea-hypopnea Index</td>
</tr>
<tr>
<td>OSA</td>
<td>Obstructive sleep apnea</td>
</tr>
<tr>
<td>ESS</td>
<td>Epworth sleepiness scale</td>
</tr>
<tr>
<td>AKT</td>
<td>Apnea Knowledge Test</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>FOSQ</td>
<td>Functional outcomes of sleep questionnaire</td>
</tr>
</tbody>
</table>

AKT: Apnea Knowledge Test
FOSQ: Functional outcomes of sleep questionnaire