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Abstract 
Agriculture is vital to India's economy and food security but is highly vulnerable to climate change. This study examines the impact of rainfall, 
temperature, arable land, energy consumption, fertilizer, and technology inputs on cereal production in India from 1965 to 2018 using ARDL and Toda-
Yamamoto Granger Causality techniques. Results show temperature negatively affects cereal production, while rainfall, arable land, energy, fertilizer, 
and technology have a positive impact. There is a unidirectional causal relationship between these factors and cereal production. The study suggests 
adopting modern technology, prioritizing organic farming, educating farmers, investing in agricultural R&D, and developing sustainable irrigation 
infrastructure. 
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1.0 Introduction 
Agriculture is vital to India's economic growth, poverty reduction, and sustainable resource management. Production has surged from 
under 51 million metric tonnes in 1951 to 314.51 million tonnes in 2020-2021 (PIB, 2023). While the Green Revolution improved yields, 
it also led to soil depletion, waterlogging, pollution, and rising costs. Additionally, climate change threatens food security, making the 
issue more complex (Datta et al., 2022). 

India's diverse climate makes it particularly vulnerable, with temperatures rising by 0.3-0.8°C per decade and a projected increase 
of 2-4°C by 2100. Rainfall patterns are expected to become more intense and frequent (Guntukula and Goyari, 2020). These changes 
threaten cereal yields, highlighting the need for proactive measures. 

The existing literature on climatic and non-climatic impacts on cereal production in India is limited (e.g., Kumar et al., 2021; Jena, 
2021; Chopra, 2022; Guntukula, 2020). Previous studies have overlooked the role of technological inputs, such as raw material imports, 
despite their importance. This study addresses this gap by analyzing the short- and long-term effects of climatic variables (rainfall, 
temperature) and non-climatic variables (arable land, energy use, fertilizers) on cereal production in India from 1965 to 2018. Using 
advanced methods like the ARDL approach and Toda-Yamamoto Granger causality framework, this study aims to quantify these impacts 
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and establish causal relationships, offering valuable insights into sustainable agriculture. The paper is structured as follows: Section 2 
reviews the literature on the impact of climatic and non-climatic variables on cereal production. Section 3 describes the data, econometric 
modeling, and empirical techniques. Section 4 presents the results, and Section 5 discusses the conclusions and policy 
recommendations. 
 
 

2.0 Literature review 
Climate change impacts various aspects of agricultural production, including cropping area, intensity, and output. The extent of the 
impact depends on changes in variables like rainfall and temperature, with minimum temperatures and rainfall benefiting crop yield while 
maximum temperatures and rainfall pose threats to food security (Firdaus et al., 2020).  

The empirical studies show conflicting impacts of climatic variables on cereal production. Kumar et al. (2021b) find that rainfall has 
a positive short-term but negative long-term effect on rice output in India. Temperature negatively affects rice output in the short term 
but becomes insignificant over time. However, the harvested area shows a positive impact on rice output. Jena (2021) utilized a Panel 
Autoregressive Distributed Lag (PARDL) model to study the impact of climate change on paddy and sugarcane yield in selected districts 
of Odisha. They found that increased precipitation and temperature lead to a decrease in crop yield, while fertilizer usage has a positive 
effect. Chopra (2022) employed the ARDL method to examine various inputs on crop output in India. Results showed that land use, 
gross irrigated area, natural water supply, and fertilizer have positive long-term effects, while climate change has a negative but 
insignificant effect. Guntukula (2020) analyzed the impact of rainfall and temperature on multiple crops, finding negative effects of rainfall 
on food crops (except pulses) and positive effects on non-food crops. The average maximum temperature had a favourable impact on 
most crops, while the average lowest temperature affected crops differently. 

Chandio et al. (2022b) studied the factors influencing agricultural productivity in India from 1965 to 2015, finding that climate change 
factors such as CO2 emissions and temperature negatively affect productivity, while rainfall has a positive impact. Non-climatic variables 
like energy consumption, financial development, and labour force positively impact agricultural productivity. Gul et al. (2022) focused on 
Pakistan, revealing that temperature negatively affects major food crop yields, while rainfall and cultivated areas do not have significant 
long-term effects. Fertilizer usage and formal credit have a bidirectional causal relationship with major food crop yields. 

Previous research supports the importance of energy in crop production. High-income countries have benefited from electricity use, 
while low- and middle-income countries face challenges due to high costs and inadequate grid connections. In China, Chandio et al. 
(2020a) and Khan et al. (2021) find a strong positive correlation between energy consumption and agricultural production in the short 
and long run. Khan et al. (2021) also establish a significant impact of energy consumption on fruit crop production but with unidirectional 
causality. 

The strategy of importing raw materials and heat-resistant seed stock has been identified as a means to increase agricultural yields. 
Abidin et al. (2022) found a positive and significant relationship between agricultural raw material import, irrigated land, labour force, 
capital creation, and rice output in Malaysia. Similarly, Soullier et al. (2020) suggest that importing agricultural raw materials can help 
crop farmers in West Africa expand their businesses. Mughal and Sers (2020) also highlight the potential of importing agricultural raw 
materials to address scarcity issues and improve crop production in South Asia. 

 
 

3.0 Data and Methodology 
 
3.1 Data and Variables 
The present study examines the relationship between climate change and agriculture in India over 53 years (1965-2018) due to data 
availability. Table 1 provides a comprehensive description of the variables utilized in this study. To enhance the reliability of the empirical 
estimates and facilitate the interpretation of the coefficient values, all variables have been logarithmically transformed (Ridzuan et al., 
2020).  

 
Table 1: Variables Descriptions 

Variable Unit Database 

lnCEREAL Cereal production (metric tons) https://databank.worldbank.org/source/world-development-indicators# 

lnRAIN millimeter (mm) World Bank Climate Change Knowledge 
Portal https://climateknowledgeportal.worldbank.org/download-data 

lnTEMP degree Celsius World Bank Climate Change Knowledge 
Portal https://climateknowledgeportal.worldbank.org/download-data 

lnARABLE Arable land (hectares) https://databank.worldbank.org/source/world-development-indicators# 

LnENERGY Gigajoule per capita Statistical Review of World Energy 

lnTI Agricultural raw materials imports 
(% of merchandise imports) 

https://databank.worldbank.org/source/world-development-indicators# 

lnFER Tonnes The Food and Agriculture Organization (FAO) 
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3.2 Econometric Specification 
Considering that the climatic and non-climatic variables may have impacts on cereal production in India, the multivariate equation is 
expressed as Eq. (1): 
 
𝑙𝑛𝐶𝐸𝑅𝐸𝐴𝐿𝑡 = 𝑓(𝑙𝑛𝑅𝐴𝐼𝑁𝑡 , 𝑙𝑛𝑇𝐸𝑀𝑃𝑡, 𝑙𝑛𝐴𝑅𝐴𝐵𝐿𝐸𝑡 , 𝑙𝑛𝐸𝑁𝐸𝑅𝐺𝑌𝑡,𝑙𝑛𝑇𝐼𝑡, 𝑙𝑛𝐹𝐸𝑅𝑡)                                (1)                                                    
The reduced form of this model is presented as Eq. (2). 
 
𝑙𝑛𝐶𝐸𝑅𝐸𝐴𝐿𝑡 =  𝛼 + 𝛽1𝑙𝑛𝑅𝐴𝐼𝑁𝑡 + 𝛽2𝑙𝑛𝑇𝐸𝑀𝑃𝑡 + 𝛽3𝑙𝑛𝐴𝑅𝐴𝐵𝐿𝐸𝑡 + 𝛽4𝑙𝑛𝐸𝑁𝐸𝑅𝐺𝑌𝑡 + 𝛽5𝑙𝑛𝑇𝐼𝑡 + 𝛽6𝑙𝑛𝐹𝐸𝑅𝑡  + 𝜀𝑡                                                                                                                                                  
(2)                                                                  

 
where 𝛼 is the intercept, 𝜀𝑡 is the error term and the parameters 𝛽1−𝛽6 signify the estimated coefficients. The signs of the coefficient 

of  𝛽1 and 𝛽2 are expected to be positive and negative respectively, while the rest of the variables are expected to have a positive sign 
coefficient (Chandio et al., 2022b; Jena, 2021; Guntukula, 2020). 
 
3.3 Econometric Methodology 
 
3.3.1 ARDL model 
The ARDL procedure of Pesaran et al. (2001) is utilized to test long-run cointegration among variables. This approach is statistically 
superior, robust against endogeneity issues, and suitable for variables with different orders of integration, making it advantageous for 
small sample sizes. 

The ARDL model for the underlying variables is as follows: 

ΔlnCEREAL𝑡 = 𝛼0 + ∑ 𝛽1𝑖ΔCEREAL𝑡−𝑖 + ∑ 𝛽2𝑖ΔRAIN𝑡−𝑖

𝑘

𝑖=0

+  ∑ 𝛽3𝑖ΔTEMP𝑡−𝑖

𝑘

𝑖=0

𝑘

𝑖=1

 

                       + ∑ 𝛽4𝑖ΔARABLE𝑡−𝑖

𝑘

𝑖=0

+ ∑ 𝛽5𝑖ΔENERGY𝑡−𝑖

𝑘

𝑖=0

+ ∑ 𝛽6𝑖ΔTI𝑡−𝑖

𝑘

𝑖=0

+ ∑ 𝛽7𝑖ΔFER𝑡−𝑖

𝑘

𝑖=0

+ 𝛽8𝑙𝑛𝐶𝐸𝑅𝐸𝐴𝐿𝑡−1 + 𝛽9𝑙𝑛𝑅𝐴𝐼𝑁𝑡−1 

+ 𝛽10𝑙𝑛𝑇𝐸𝑀𝑃𝑡−1 + 𝛽11𝑙𝑛𝐴𝑅𝐴𝐵𝐿𝐸𝑡−1 + 𝛽12𝑙𝑛𝐸𝑁𝐸𝑅𝐺𝑌𝑡−1 + 𝛽13𝑙𝑛𝑇𝐼𝑡−1 + 𝛽14𝑙𝑛𝐹𝐸𝑅𝑡−1 

+ 𝜀𝑡                                                                                                                   (5) 

where 𝛼 is the constant term, Δ is the first difference operator, 𝛽1-𝛽7 are the coefficients for the short term, while 𝛽8-𝛽14 are the 
coefficients for the long run. The ARDL procedure involves two steps: optimal lag selection using final prediction error (FPE) and an F 
test to check for long-run relationships among variables. If the F-statistic, compared to Narayan's (2005) critical values, exceeds the 
upper bound, cointegration is confirmed; if below the lower bound, it's not; intermediate values are inconclusive. After the cointegration 
of the variables is established, the following estimate of the long-term model is given: 

lnCEREAL𝑡 = 𝛼0 + ∑ 𝛽1𝑖CEREAL𝑡−𝑖 + ∑ 𝛽2𝑖RAIN𝑡−𝑖

𝑘

𝑖=0

+ ∑ 𝛽3𝑖TEMP𝑡−𝑖

𝑘

𝑖=0

𝑘

𝑖=1

 

                       + ∑ 𝛽4𝑖ARABLE𝑡−𝑖

𝑘

𝑖=0

+ ∑ 𝛽5𝑖ENERGY𝑡−𝑖

𝑘

𝑖=0

+  ∑ 𝛽6𝑖TI𝑡−𝑖

𝑘

𝑖=0

+  ∑ 𝛽7𝑖FER𝑡−𝑖

𝑘

𝑖=0

+ 𝜀𝑡                                                                                                            (6) 

Short-term coefficients are then determined using the error correction model (ECM) in an ARDL technique: 

ΔlnCEREAL𝑡 = 𝛼0 + ∑ 𝛽1𝑖ΔCEREAL𝑡−𝑖 + ∑ 𝛽2𝑖ΔRAIN𝑡−𝑖

𝑘

𝑖=0

+  ∑ 𝛽3𝑖ΔTEMP𝑡−𝑖

𝑘

𝑖=0

𝑘

𝑖=1

 

                       + ∑ 𝛽4𝑖ΔARABLE𝑡−𝑖

𝑘

𝑖=0

+ ∑ 𝛽5𝑖ΔENERGY𝑡−𝑖

𝑘

𝑖=0

+ ∑ 𝛽6𝑖ΔTI𝑡−𝑖

𝑘

𝑖=0

+ ∑ 𝛽7𝑖ΔFER𝑡−𝑖

𝑘

𝑖=0

+ 𝜃𝐸𝑇𝐶𝑡−1

+ 𝜀𝑡                                           (7) 

Where 𝜃 indicates the coefficient of error correction term that represents the adjustment speed and should be significantly negative, 
𝐸𝑇𝐶𝑡−1, on the other hand, is the lagged error correction term and depicts the length of time it takes for short-term shocks to adapt to 
their long-term levels. 
3.3.2 The Toda–Yamamoto approach to Granger causality 
The Toda-Yamamoto (1995) causality test overcomes issues of non-stationarity and co-integration, unlike the conventional Granger 
test. It avoids errors in identifying the order of integration by using a VAR model on variable levels, ensuring no data loss and providing 
a more accurate understanding of causality relationships. The Toda-Yamamoto causality test can be expressed as follows: 

𝑙𝑛𝐶𝐸𝑅𝐸𝐴𝐿𝑡 = 𝜆 + ∑ 𝛼1𝑖𝑙𝑛𝐶𝐸𝑅𝐸𝐴𝐿𝑡−𝑖

𝑘

𝑖=1

+ ∑ 𝛼2𝑗

𝑑𝑚𝑎𝑥
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𝑙𝑛𝐶𝐸𝑅𝐸𝐴𝐿𝑡−𝑗 +  ∑ 𝛽1𝑖𝑙𝑛𝑅𝐴𝐼𝑁𝑡−𝑖

𝑘

𝑖=1

 + ∑ 𝛽2𝑗

𝑑𝑚𝑎𝑥

𝑗=𝑘+1

𝑙𝑛𝑅𝐴𝐼𝑁𝑡−𝑗

+  ∑ 𝜇1𝑖𝑙𝑛𝑇𝐸𝑀𝑃𝑡−𝑖

𝑘

𝑖=1

+ ∑ 𝜇2𝑗

𝑑𝑚𝑎𝑥

𝑗=𝑘+1

𝑙𝑛𝑇𝐸𝑀𝑃𝑡−𝑗 
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+ ∑ 𝜃1𝑖𝑙𝑛𝐴𝑅𝐴𝐵𝐿𝐸𝑡−𝑖

𝑘

𝑖=1

+ ∑ 𝜃2𝑗

𝑑𝑚𝑎𝑥

𝑗=𝑘+1

𝑙𝑛𝐴𝑅𝐴𝐵𝐿𝐸𝑡−𝑗 +  ∑ 𝛾1𝑖𝑙𝑛𝐸𝑁𝐸𝑅𝐺𝑌𝑡−𝑖

𝑘

𝑖=1

+ ∑ 𝛾2𝑗

𝑑𝑚𝑎𝑥

𝑗=𝑘+1

𝑙𝑛𝐸𝑁𝐸𝑅𝐺𝑌𝑡−𝑗 + ∑ 𝛿1𝑖𝑙𝑛𝑇𝐼𝑡−𝑖

𝑘

𝑖=1

+ ∑ 𝛿2𝑗

𝑑𝑚𝑎𝑥

𝑗=𝑘+1

𝑙𝑛𝑇𝐼𝑡−𝑗  

+ ∑ 𝜌1𝑖𝑙𝑛𝐹𝐸𝑅𝑡−𝑖

𝑘

𝑖=1

+ ∑ 𝜌2𝑗

𝑑𝑚𝑎𝑥

𝑗=𝑘+1

𝑙𝑛𝐹𝐸𝑅𝑡−𝑗 + 𝜀𝑡𝑗𝑖                                                    (8) 

where 𝑘 is the optimum lag based on the information criteria and 𝑑𝑚𝑎𝑥 is the highest degree of integration. The validity of the null 
hypothesis of no Granger causality is examined using Wald-ꭓ2 statistics. Equations for other series may be generated similarly. 
 
 

4.0 Empirical Results and Discussions 
 
4.1 Unit root analyses 
To ensure an accurate assessment of stationarity in time series data, this study uses the Zivot and Andrews (1992) test, which addresses 
the limitations of traditional unit root tests by considering structural breaks. Break points are chosen using T-statistics, enhancing 
explanatory power and robustness. Tale 2 shows that, in the ADF test, lnRAIN, lnTEMP, and lnFER exhibit level stationarity (I(0)), while 
all other variables show first difference stationarity (I(1)). Similarly, in the ZA test, all variables except lnENERGY demonstrate level 
stationarity (I(0)). 
 

Table 2: Results of Unit root test 

Variables ADF (Level) ADF (Δ) ZA (Level) Break Year ZA (Δ) 
Break 
Year 

lnCEREAL  -1.8767 -7.2434*** -4.1828** 2002 -5.9783** 2007 

lnRAIN -8.5594*** -8.9087*** -8.9154*** 2006 -5.6955** 2005 

lnTEMP -3.4545*** -6.6078*** -5.34*** 1998 -9.8233 1981 

lnARABLE -0.0140 -6.4249*** -3.9084** 1985 -8.5914*** 2008 

lnENERGY -6.6078 -7.7482*** -2.9333 2007 -4.0509** 1996 

lnTI  -1.2667 -7.9783*** -2.7135*** 2005 -4.5712* 2005 

lnFER -4.6278*** -6.9242*** -4.1828** 1977 -10.088*** 1975 

Note: The values in the table specify statistical values of the ADF and ZA tests. The asterisk ***, **, and * represent the level of significance at 
1%, 5%, and 10% respectively.  

 
4.2 Lag Length Criteria 
To ensure consistent empirical results, selecting an appropriate lag length for each variable is crucial, especially with fewer than 60 
observations. Following Liew's (2004) recommendation, this study uses a lag length of 3 based on FPE criteria for robust findings. 
 

Table 3: Lag order selection criteria 

 Lag LogL LR FPE AIC SC HQ 

0 411.4368 NA 3.68e-17 -17.9750 -17.6939 -17.8702 
1 682.7052 446.0858 1.94e-21 -27.8536 -25.6052* -27.0154* 
2 727.7827 60.1033 2.71e-21 -27.6793 -23.4637 -26.1077 
3 804.7978 78.7265* 1.23e-21* -28.9243 -22.7415 -26.6195 
4 877.2954 51.5539 1.24e-21 -29.9687* -21.8186 -26.9304 

 
4.3 Bayer-Hanck Cointegration Results 
Bayer and Hanck (2013) propose a new method combining multiple non-cointegrating tests using Fisher's formula, offering more 
accurate and robust results than traditional cointegration tests. Bayer-Hanck Cointegration Results in Table 4 indicate that both the EG-
J and EG-J-BA-BO tests yielded F-values surpassing the critical value, confirming the presence of long-run cointegration among the 
selected variables. 
 

Table 4: Bayer-Hanck Cointegration Results 

 Engle-Granger (EG) Johansen (J) Banerjee (Ba) Boswijk (Bo) 

Test- Stat -4.2164 77.6275 -8.9929 95.6067 
p-value 0.2392 0.0000 0.0000 0.0000 
Fisher Type Test statistics, Bayer Hanck Test 
EG-J 58.122953  5% critical value 10.352 
EG-J-Ba-Bo 168.64704  5% critical value 19.761 
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4.4 ARDL-Bounds Test Result 
Table 5 shows the results of bound testing, where the F-statistic (7.5705) exceeds the critical value (4.078) at the 1% significance level, 
validating the Bayer-Hanck Cointegration Test. This confirms a significant long-term cointegrating relationship among cereal production, 
rainfall, temperature, arable land, energy consumption, technological inputs, and fertilizer in India. 
 

Table 5: ARDL bound test 
Test Statistic Value K 

F-statistic 7.5705 6 
Critical Value Bounds 
Significance I (0) I(1) 

10% 2.139 3.204 
5% 2.490 3.658 
1% 3.330 4.078 

Source: Author Estimation 

 
4.5 Estimated Long-Run and Short-Run Coefficients and Discussion 
Table 6 presents the long-run coefficients of the ARDL model, showing the statistical significance of all explanatory variables. It is found 
that rainfall plays a critical role in cereal production, with a 1% increase in lnRAIN leading to a 0.1318% increase in output. In India, 78% 
of annual rainfall supports agriculture, yet only 65% of cultivated land is rain-fed, making it vulnerable to water scarcity (Suri and Sharma, 
2022). Temperature negatively impacts cereal production, with a 1% increase in lnTEMP resulting in a 0.8091% decline in lnCEREAL. 
This finding aligns with empirical evidence on climatic factors affecting crop yields such as Chandio et al. (2021c) and Kumar et al. 
(2021a), nevertheless, our results differ from Kumar et al. (2021b), who found rainfall negatively impacts rice yield and temperature has 
an insignificant positive effect in India. These findings reinforce the notion that climate change significantly impacts crop production, 
thereby increasing the susceptibility and risk of farming in India. 

Technological inputs and fertilizers show a positive and significant relationship with cereal production in India. A 1% increase in 
agricultural raw material imports (lnTI) results in a 0.05% increase in cereal production, similar to the findings by Sers and Mughal 
(2020), Soullier et al. (2020), and Abidin et al. (2022). This finding indicates that the adoption of modern technologies, such as imported 
agricultural machinery and heat-resistant seeds, positively impacts crop production. Therefore, India should either continue to import 
these technologies or develop its own through extensive research and development, supported by substantial budget allocations. Our 
analysis shows a 1% increase in fertilizer consumption (lnFER) leads to a 0.2% increase in cereal production, consistent with Jena 
(2021), Chopra (2022), and Gul et al. (2022). From 1970 to 2020, Indian fertiliser use grew about 13-fold (Suri and Sharma, 2022). With 
diminishing cultivable areas, increasing fertiliser usage is necessary to improve agricultural production, but it must be handled 
responsibly to avoid soil deterioration and water contamination. Efficient fertiliser practices must be combined with precision farming 
and soil health monitoring for long-term production and sustainability. 

The ARDL analysis reveals a positive relationship between lnENERGY and lnCEREAL, where a 1% increase in lnENERGY leads 
to a 0.44% rise in lnCEREAL. This suggests that agricultural modernization has increased energy consumption. Previous studies link 
groundwater irrigation expansion, driven by energy subsidies, to higher yields and reduced food costs (Chandio et al., 2020b; Khan et 
al., 2021). Nevertheless, the rise in energy consumption emphasises the need to incorporate energy-efficient technology to achieve an 
optimal balance between production and environmental sustainability. 

The model also shows agricultural land's significant contribution to cereal production, with a 1% increase in lnARABLE leading to a 
1.49% rise in lnCEREAL. India's abundant arable land has fostered robust agriculture, as highlighted by Kumar et al. (2021). The 
extensive cultivable area in India has played a significant role in ensuring a robust agricultural performance, which in turn has supported 
both food security and economic stability. To continue this increase, it is crucial to allocate resources towards sustainable land 
management and advanced agricultural practices. 

 
Table 6: ARDL bound test (Long Run) 

Dependent Variable: lnCEREAL 

Lag (3,3,3,2,1,0,0) 

Variable Coefficient t-stat 

lnRAIN 0.1318** 2.2420 
lnTEMP -0.8091*** -2.9055 
lnARABLE 1.4865*** 3.1596 
lnENERGY 0.4354*** 10.6041 
lnTI  0.04767*** 3.7048 
lnFER 0.2008*** 10.1705 
   
Diagnostic Test F- stat p-value 

BG-LM 2.2524 0.0933 
Breusch-Pagan-Godfrey  1.0286 0.4616 
Jarque-Bera 1.2491 0.5355 
Ramsey-RESET 1.1741 0.2881 

Note: The asterisk ***, **, and * represent levels of significance at 1%, 5, and 10% respectively. 

 
Table 7: ARDL bound test (Short Run) 

Dependent Variable: lnCEREAL 
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Lag (1,1,0,0,0,0) 

Variable Coefficient t-stat 
Δ lnCEREAL(-1) 0.5693*** 3.3898 
Δ lnCEREAL(-2) 0.2145* 1.9592 
ΔlnRAIN 0.1210*** 1.7419 
ΔlnTEMP -1.5217*** -3.0530 
ΔlnARABLE 2.7957*** 2.8656 
ΔlnENERGY -0.1728 -0.6925 
ΔlnENERGY(-1) 0.2184 0.6898 
ΔlnENERGY (-2) -0.5393** -2.3222 
ΔlnTI 0.0623*** 3.1538 
ΔlnTI(-1) 0.0458 1.6433 
ΔlnTI(-2) -0.0508** -2.3714 
ΔlnFER 0.1964*** 2.8772 
ΔlnFER(-1) -0.2694*** -3.4453 
ECT(-1) -1.8807*** -8.2885 

                  Note: The asterisk ***, **, and * represent the levels of significance at 1%, 5%, and 10% respectively. 
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Table 7 confirms a robust long-run relationship among variables, supported by a significant negative lagged error term (ECT(-1)) at 
the 1% level, with an estimated ECT value of 1.88 indicating a rapid adjustment rate of 188%, implying quick convergence to equilibrium 
within a year. These results highlight the reliability and stability of the relationship. Diagnostic tests in Table 6 reveal no issues of serial 
correlation, non-normality, or heteroscedasticity. The Ramsey-RESET test confirms the model's appropriate functional form, while 
CUSUM and CUSUMQ tests demonstrate model stability and absence of endogeneity, supporting its suitability for policy implications. 
 
4.6 Robustness Tests 
Robustness tests using FMOLS, DOLS, and CCR estimators (Škare & Porada-Rochoń, 2023) further validate ARDL findings. Table 8 
shows consistent results, indicating positive impacts of rainfall, technological inputs, fertilizer, energy use, and arable land on cereal 
production, with temperature exerting a negative effect. Most variables are statistically significant at the 1% level, with high R2 values 
indicating strong model fit and explanatory power. Overall, these tests affirm the ARDL model's reliability and the significant influence 
of both climatic and non-climatic factors on cereal production in India from 1965 to 2018. 

 
Table 8: Robustness Test (FMOLS, DOLS, and CCR estimations) 

                                   FMOLS Model DOLS Model CCR Models 

Variable Coefficient t-stat Coefficient t-stat Coefficient t-stat 
lnRAIN 0.1885*** 10.83326 0.189427*** 3.7469 0.1865*** 6.5568 
lnTEMP -1.939*** 12.97976 -1.940*** -4.456 -1.9381*** -8.7746 
lnARABLE 1.0868*** 3.700962 1.0095 1.2009 1.0841*** 3.5100 
lnENERGY 0.4173*** 17.35867 0.4090*** 6.1850 0.4157*** 17.9626 
lnTI  0.0369*** 8.794440 0.0369*** 3.0109 0.0364*** 7.1617 
lnFER 0.2143*** 18.88738 0.2180*** 7.1616 0.2153*** 20.6960 
C -1.0487 -0.1881 0.367471 0.0223 -0.9999 -0.1667 

R-squared 0.9925  0.9927  0.9925  
Adjusted R-squared 0.9915  0.9917  0.9915  

Note: The asterisk ***, **, and * represent the levels of significance at 1%, 5%, and 10% respectively. 

 
4.7 The Toda-Yamamoto Causality Test 
After establishing both short-run and long-run relationships in the model, the study explores causal directions among variables using 
the Toda-Yamamoto Augmented Granger Causality test based on equation (8). Table 8 presents Chi-square values derived from the 
augmented VAR (3+1) model, indicating no serial connections among variables. Results show a unidirectional causality from rainfall, 
temperature, arable land, energy consumption, technological inputs, and fertilizer to cereal production growth. Lagged values of these 
variables significantly enhance model fit (ꭓ2 = 130.23), reinforcing their substantial influence on cereal production. These findings align 
with Khan et al. (2021), who similarly identified unidirectional causality from energy use to agricultural value-added, and bidirectional 
causality between temperature and agricultural output. 
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Table 9: Granger causality test/Block Exogeneity Wald Tests 
                        Dependent Variable 
 lnCEREAL lnRAIN lnTEMP lnARABLE lnENERGY lnTI lnFER 

lnCEREAL does 
not cause 

 2.0334 2.0497 8.4518 3.1871 2.4155 6.3559 

lnRAIN does not 
cause 

22.661***  2.7538 4.2795 2.8727 2.7308 2.5559 

lnTEMP does 
not cause 

9.7873** 2.1680  3.1783 1.7266 3.2252 7.3428 

lnARABLE does 
not cause 

13.102*** 6.1923 2.8367  2.5316 7.1890 0.9528 

lnENERGY 
does not cause 

31.596*** 4.6302 2.7324 3.0809  3.9829 6.0142 

lnTI does not 
cause 

14.704*** 9.1895 2.2576 3.3557 1.9161  7.9880 

lnFER does not 
cause 

18.809*** 5.6010 5.6317 6.3824 1.6023 5.0391  

All 130.23*** 50.207*** 19.00063 47.226*** 21.042 30.985 38.347** 

Note: The asterisk ***, **, and * represent the levels of significance at 1%, 5%, and 10% respectively. The arrow shows the direction of causality. 

 
 

5.0 Conclusion and Policy Implications 
This study assesses how climate, non-climate factors, and technological inputs affect cereal production in India from 1965 to 2018. It 
finds that temperature negatively impacts production, while rainfall, arable land, energy use, fertilizers, and technology have positive 
effects. To improve food security and economic growth, India should adopt new policies, invest in advanced technologies, enhance 
weather forecasting, develop sustainable irrigation, and promote organic fertilizers. Additionally, supporting eco-friendly fertilizer R&D 
and education on irrigation and climate adaptation is crucial. 

The study is limited by its focus on India and data constraints. Future research should include more variables like CO2 levels, use 
non-linear techniques, and expand sample sizes for better insights. 

 
 

6.0 Paper Contribution to Related Field of Study 
Although cereal production in India is critical for food security and economic growth, there is a significant gap in research exploring the 
influence of climate and non-climate factors, particularly technological inputs, on cereal yields. As a result, this study seeks to evaluate 
the impact of climate variables, such as rainfall and temperature, and non-climate variables like arable land, energy consumption, 

fertilizer, and technology inputs, on cereal production in India. 
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