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Abstract  
This paper explores the uses of the Particle Swarm Optimization (PSO) algorithm to minimize job completion time during scheduling tasks. The goal is 
to reduce the time needed to complete all tasks. The PSO algorithm can achieve fast convergence due to its swarm intelligence behavior and its 
capability to search in a global space. Leveraging its global search ability and fast convergence, PSO effectively optimizes schedules, leading to 
improved resource management and cost reduction. The method shows strong potential for industries like manufacturing and logistics and 
demonstrates broad applicability across various complex scheduling domains. 
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1.0 Introduction 
PSO is versatile and can be adapted to solve many optimization problems, especially where the solution space is large or poorly 
understood. PSO is widely used due to its simplicity, efficiency, and ability to handle a variety of optimization problems. It requires few 
parameters to tune, making it more accessible than other complex optimization algorithms like genetic algorithms. PSO is useful in 
applications such as neural network training, engineering design, and financial modeling. However, it can sometimes converge 
prematurely, especially in problems with many local optima; it requires careful tuning of parameters like inertia weight and acceleration 
coefficients to achieve the best results. PSO is generally simpler to implement and requires fewer computational resources, as it only 
updates velocities and positions, whereas Genetic Algorithms (GA) use more complex operations like crossover and mutation, making 
it more computationally intensive. PSO is often faster in convergence but may suffer from premature convergence, especially in multi-
modal problems Hu et al., 2022). GA, with its exploration through recombination and mutation, is typically better at exploring a diverse 
solution space, making it less likely to get stuck in local optima. However, GA can be slower to converge and may require more fine-
tuning of its operators for effective performance. Both techniques are versatile, with GA being preferred for highly complex or 
combinatorial problems, while PSO is favored for continuous optimization tasks. 

 Efficient scheduling strategies can significantly enhance resource utilization, reduce completion times, and improve system 
performance. Efficient job scheduling is important because it can increase productivity, reduce operational costs, and improve overall 
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system efficiency. However, achieving optimal job scheduling is challenging due to the complexity of the tasks, the dynamic nature of 
resource availability, and the need to balance multiple conflicting objectives. Traditional scheduling systems frequently struggle with 
scalability and adaptability, making it necessary to explore more advanced ways. Particle Swarm Optimisation (PSO), a meta-heuristic 
algorithm inspired by the social behavior of birds flocking or fish schooling, has gained popularity for solving difficult scheduling issues 
due to its simplicity and effectiveness Potluri et al., 2023). PSO operates by launching a swarm of particles that search the solution 
space for the optimal solution. Each particle adjusts its position based on its own and neighboring particles' experiences, achieving an 
effective balance of exploration and exploitation. One of PSO's key advantages in solving scheduling problems is its ability to handle 
multi-objective optimization efficiently. It does not require gradient information; hence, it is suitable for problems involving discontinuous 
or non-differentiable objective functions. Wang et al. (2022) suggested a hybrid approach that combines genetic algorithms and an 
improved PSO, resulting in significant reductions in task completion time and load balancing in cloud computing environments.  

Similarly, Zhang et al. (2022) developed an adaptive discrete PSO algorithm for flexible job shop scheduling that enhanced 
convergence speed and schedule efficiency. Inefficient job scheduling causes tasks to take longer to complete because they are not 
appropriately sequenced and allocated to resources. This might cause delays in overall paper timelines and lower productivity. When 
jobs are planned without considering the optimal sequence or resource capabilities, certain jobs are often left waiting while resources 
sit idle. To reduce these delays, an optimized scheduling system is required, which ensures that each job is assigned at the appropriate 
time to the most suitable resource, lowering overall make-span and enhancing efficiency.  

In a typical formulation of JSP, let J = {J1, J2,…, Jn} represent the set of jobs to be scheduled, where each job Ji has a sequence 
of tasks that must be executed in a specific order. The relationship between job J and its associated processing times t is critical in 
determining the optimal schedule. The objective function in JSP typically aims to minimize the makespan, which is calculated as the 
maximum completion time among all jobs. This involves sequencing tasks like those of the resources that are utilized efficiently, and 
tasks are completed as early as possible without violating any constraints. In short, JSP addresses the difficulty of optimizing resource 
allocation and task sequencing for efficient job scheduling. However, JSP aims to maximize operational efficiency and productivity in 
diverse industrial and manufacturing settings by developing an appropriate objective function that considers the relationships between 
jobs J, task processing times t, and limitations imposed by available resources, which are critical setbacks of this approach. Therefore, 
the primary goal of this study is to minimize the make-span, or the total time required to accomplish all activities, to maximize resource 
utilization and satisfy job deadlines.  

 
 

2.0 Literature Review  
According to Hu et al. (2022), they developed a unique hybrid optimization algorithm that combines Genetic Algorithm (GA) and Particle 
Swarm Optimization (PSO) to address the complexity of job scheduling in cloud computing environments. The representation strategy 
encodes tasks and resources with chromosomes for GA and particles for PSO, respectively. This dual representation allows leveraging 
the benefits of both algorithms: GA's robust global search capabilities and PSO's fast convergence and local search efficiency. The 
fitness function in their study was precisely built to minimize makespan while improving load balancing across virtual machines. By 
focusing on these crucial parameters, the algorithm aims to optimize overall performance and resource utilization in cloud environments. 
The hybrid approach uses GA to successfully explore a large solution space and PSO to exploit the most promising portions of this 
space, ensuring a balance between exploration and exploitation. For computing performance, the hybrid algorithm outperformed the 
solo implementations of GA and PSO. This hybrid technique produced solutions with faster convergence rates and higher accuracy. 
The findings revealed a significant reduction in makespan and improved load distribution, which is necessary for successful job 
scheduling in cloud computing. This hybrid approach improves solution quality while providing a scalable and adaptable framework for 
job scheduling in most computational environments.  

The study by Li et al. (2020) introduces an improved PSO technique combined with GA principles for job shop scheduling problems. 
This hybrid approach takes advantage of the characteristics of both algorithms to address the inherent complexities and NP-hardness 
of scheduling jobs. The problem is represented by encoding job sequences and machine allocations as particles within the PSO frame 
job. Each particle represents a potential solution, with its position corresponding to a particular job schedule. The use of GA principles 
aids in the maintenance of population diversity, hence avoiding premature convergence—a major problem in regular PSO. The fitness 
function utilized in this study is intended to minimize the makespan, or the total time required to complete all scheduled jobs. The fitness 
function additionally includes penalties for violating job priority limits and machine availability, ensuring that the generated schedules 
are both feasible and optimal. The hybrid algorithm's computing performance was measured against a set of benchmark job shop 
scheduling tasks. The results showed significant improvements in convergence speed and solution quality over standalone PSO and 
GA algorithms. Specifically, the hybrid technique reduced makespan values and improved load balancing among machines. The study 
demonstrates the effectiveness of combining evolutionary strategies with swarm intelligence to solve complicated scheduling problems. 
Potluri et al. (2023) developed an improved job scheduling algorithm for cloud computing environments by using an optimized PSO 
approach. This study addresses the critical challenge of job scheduling by offering a dynamic adjustment of parameters using discrete 
positioning (DAPDP) within the PSO framework. The representation approach encodes job loads and cloud resources as particles in 
the PSO model. Each particle represents a potential solution, and its position corresponds to a certain task scheduling arrangement.  

This encoding enables the flexible and dynamic assignment of cloud resources to various tasks. The fitness function used in this 
study is intended to reduce both makespan and scheduling time while considering the execution time, cost, infrastructure scalability, 
reliability, platform availability, throughput, and resource utilization. By optimizing these parameters, the fitness function ensures that 
planned tasks are not only executed effectively but also make the best use of available resources. The proposed DAPDP-based PSO 
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algorithm was evaluated with other job scheduling methods in cloud environments. The findings showed significant improvements in 
makespan, scheduling time, and execution time. Specifically, the DAPDP technique improved resource allocation, reduced execution 
time, and increased reliability. A study by Zarrouk et al. (2019) developed a two-level PSO algorithm to enhance the performance by 
subdividing the search space into regions with common properties, further dividing these into sub-regions with similar features, such as 
schedules with the same partial order. By using lower-bound criteria and optimized particle coding, the fitness function reduces 
complexity and maintains PSO self-adaptive learning by avoiding non-optimal regions. This design encourages a balance between 
exploration and exploitation. Computational results indicate that the two-level PSO consistently achieves superior makespan values, 
with a few exceptions, and demonstrates competitive results in both makespan and job load while significantly reducing CPU time.  

The dynamic adjustment of parameters based on the gap between lower-bound and current global-best values further improves 
makespan performance and CPU time. Lastly, research by Guo & Lei (2021) presents a two-level Imperialist Competitive Algorithm 
(ICA) for energy-efficient flexible job shop scheduling (FJSS). The representation strategy subdivides the search space into regions with 
common characteristics, enhancing performance by focusing on similar areas. This hierarchical approach allows multi-level granularity, 
improving both exploration and exploitation. The two-phase process involves broad exploration followed by refined searches within 
promising regions, effectively managing FJSS complexity. The fitness function balances exploration and exploitation, using lower-bound 
criteria to reduce computational complexity and avoid non-optimal regions. It maintains PSO self-adaptive learning stability, ensuring an 
efficient search trajectory. Computational results demonstrate the two-level ICA's superiority over traditional algorithms like MOGA and 
NSGA-II, consistently achieving better makespan values with significantly lower CPU time. These results validate the two-level ICA's 
effectiveness, making it a promising approach for complex, energy-efficient FJSS problems. However, the demonstrated inappropriate 
objective function that takes into account the relationships between jobs J, task processing times t, and limitations imposed by available 
resources is a critical setback of this approach. 

 
 

3.0 Methodology 
 
3.1 Solution representation  
Particle Swarm Optimization (PSO) is applied to solve the job shop scheduling problem. Each particle presents a potential solution to 
the problem, which is the optimal job schedule. The original dataset contains 72 jobs but has been reduced to 10 jobs in this paper. 
There is a total of 10 jobs with varying times required to complete them, starting with job 0 and ending with job 9.  
 
3.2 Objective function  
The goal for this job scheduling problem is to minimize the time needed to complete all of the jobs. The objective function is defined as 
the mathematical expression:  
Minimize 

 (1) 

Ci is defined as: 

 (2) 
Where:  
N: Number of jobs  
π: job at position i in the schedule  
tπ(j): Processing time of the job at position i in the schedule  
Ci: Completion time of the job at position i in the schedule. 

 
3.3 Parameter Selection  
The number of particles is set at 30. This is done to obtain a feasible and optimal solution while maintaining an acceptable processing 
time. Moreover, the stopping condition used in this coding is the maximum number of iterations. The PSO algorithm will stop searching 
for solutions if the iteration has been done 100 times. Furthermore, the inertia weight is set at 1.0. This is to ensure there is a balance 
to the particle movement in the search space, especially in global and local exploration. Finally, the cognitive coefficient and social 
coefficient are both set at 1.5. By having a balanced cognitive coefficient and social coefficient, the algorithm can balance between 
exploration and exploitation, thus producing better results.  
 
3.3 Parameter Selection  
The number of particles is set at 30. This is done to obtain a feasible and optimal solution while maintaining an acceptable processing 
time. Moreover, the stopping condition used in this coding is the maximum number of iterations. The PSO algorithm will stop searching 
for solutions if the iteration has been done 100 times. Furthermore, the inertia weight is set at 1.0. This is to ensure there is a balance 
to  the  particle  movement  in  the search space,  especially  in global and local exploration. Finally, the cognitive coefficient and social  
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Table 1. Solution Representation of the jobs 
4 1 7 6 0 9 3 5 2 8 

The solution representation example shows the schedule for the job sequentially. From this solution example, the schedule will start 
with job 4. Then, the scheduling continues with job 1. Then, it will be followed by job number 7 and so on. This sequence of jobs will 
continue until all jobs have been scheduled. The PSO process flow is shown in Figure 1. 
 

 
 

Figure 1. PSO Flow Diagram 
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coefficient are both set at 1.5. By having a balanced cognitive coefficient and social coefficient, the algorithm can balance between 
exploration and exploitation, thus producing better results. 3.3 Parameter Selection  

The number of particles is set at 30. This is done to obtain a feasible and optimal solution while maintaining an acceptable processing 
time. Moreover, the stopping condition used in this coding is the maximum number of iterations. The PSO algorithm will stop searching 
for solutions if the iteration has been done 100 times. Furthermore, the inertia weight is set at 1.0. This is to ensure there is a balance 
to the particle movement in the search space, especially in global and local exploration. Finally, the cognitive coefficient and social 
coefficient are both set at 1.5. By having a balanced cognitive coefficient and social coefficient, the algorithm can balance between 
exploration and exploitation, thus producing better results.  
 
3.4 Data Collection and Analysis  
The study utilized synthetic and benchmark datasets that simulate job scheduling scenarios in heterogeneous computing environments. 
These datasets include parameters such as job arrival time, execution time, resource demand, and priority level. The hybrid PSO 
algorithm was applied to these datasets to evaluate its effectiveness in optimizing job scheduling. The particle swarm component 
provided exploration capability, in contrast to a genetic algorithm that ensured exploitation and convergence. Performance metrics, 
including makespan, resource utilization, and throughput, were used to analyze results. The metrics were selected to comprehensively 
reflect both performance efficiency and resource management in job scheduling. 
 
 

4.0 Findings and Discussion 
The result of the baseline experiment is shown in Table 2. The results obtained demonstrate the successful application of Particle Swarm 
Optimization (PSO) to minimize the job completion time of scheduling tasks. Using a configuration of 30 particles over 100 iterations, 
with inertia weight w = 1 and cognitive and social coefficients c1 = c2 = 1.5, the algorithm converged to a stable solution by iteration 98, 
with a best cost of 112 maintained through iteration 100. This cost likely represents the total makespan, indicating the overall completion 
time for all scheduled jobs.  
 

Table 2.  Performance of a baseline experiment 
Parameters  Result  

1) No.of particles = 30  
2) Max iteration = 100  
3) Weight, w = 1  
4) c1 = 1.5  
5) c2 = 1.5  

Iteration 98/100, Best Cost: 112  
Iteration 99/100, Best Cost: 112  
Iteration 100/100, Best Cost: 112  
Best Schedule: [1 0 4 7 3 6 9 8 5 2] 

 
The optimized job sequence, [1 0 4 7 3 6 9 8 5 2], reflects the order in which tasks should be executed to achieve this minimum 

completion time. These results confirm that PSO effectively explored the scheduling space and identified an efficient schedule, thereby 
fulfilling the research objective of minimizing job completion time through intelligent optimization. The 10 different jobs against their 
respective completion times are shown in Figure 2 and the cost/iteration is presented in Figure 3, respectively. 
 

 
Figure 2. Job Schedule (Different colors represent 10 different jobs against their respective completion time) 
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Figure 3. Cost per Iteration 

 
4.1 Performance of Algorithm with Detailed Elaboration  
The algorithm is tested with different parameters. The number of particles and the maximum number of iterations are changed while the 
inertia weight, cognitive coefficient, and social coefficient are constant. The comparative results from varying PSO configurations 
illustrate the impact of particle count and iteration limits on job scheduling performance, as shown in Table 3. With 20 particles and 200 
iterations, the algorithm achieved the best result. A minimum job completion time (makespan) of 110, with convergence evident by 
iteration 198 and a final schedule of [7 1 0 4 6 3 9 5 2 8]. In contrast, increasing the particle count to 40 but reducing iterations to 50 
yielded a slightly higher best cost of 113, despite showing improvement in the last few iterations, suggesting the potential for better 
outcomes with more iterations. The third configuration, using 50 particles but only 20 iterations, resulted in the highest best cost of 116, 
indicating insufficient convergence time despite a larger search population. These findings suggest that longer iteration counts may be 
more critical than simply increasing particle numbers for effective minimization of job completion time using PSO in scheduling tasks. 
 

Table 3: Repeated Experiments 
Parameters Result 

1) No.of particles = 20 
2) Max iteration = 200 
3) Weight, w = 1 
4) c1 = 1.5 
5) c2 = 1.5 

Iteration 198/200, Best Cost: 110 
Iteration 199/200, Best Cost: 110 

Iteration 200/200, Best Cost: 110 
Best Schedule: [7 1 0 4 6 3 9 5 2 8] 

1) No.of particles = 40 
2) Max iteration = 50 
3) Weight, w = 1 
4) c1 = 1.5 
5) c2 = 1.5 

Iteration 48/50, Best Cost: 115 
Iteration 49/50, Best Cost: 113 
Iteration 50/50, Best Cost: 113 
Best Schedule: [7 1 0 4 6 5 3 8 9 2] 
  

1) No.of particles = 50 
2) Max iteration = 20 
3) Weight, w = 1 
4) c1 = 1.5 
5) c2 = 1.5 

Iteration 18/20, Best Cost: 116 
Iteration 19/20, Best Cost: 116 
Iteration 20/20, Best Cost: 116 
Best Schedule: [4 1 7 5 0 6 9 8 3 2] 

 

The results of the experiments conducted are summarized as shown in Table 4, with associated findings. According to the findings, 
achieving optimal performance in job scheduling using Particle Swarm Optimization (PSO) requires a careful balance between the 
number of particles and the number of iterations. The experiments demonstrate that just increasing the number of particles or iterations 
does not guarantee improved results. For example, while decreasing the iterations slightly improved the cost, increasing the number of 
particles with fewer iterations resulted in a higher cost, indicating inefficiency. 

 
Table 4: Comparisons of Experiments 

Parameters Used  Results  Findings 

num_particles = 30,  
max_iter = 100,  
w = 1,  
c1 = 1.5, c2 = 1.5  

Best Schedule: [1 0 4 7 3 6 9 8 5 2]  
Best Cost: 112  

Initial baseline parameters  
shows convergence but  
can be optimized further. 

num_particles = 20,  
max_iter = 200,  
w = 1,  
c1 = 1.5, c2 = 1.5  

Best Schedule: [7 1 0 4 6 3 9 5 2 8]  
Best Cost: 110  

Decreasing particles and  
Increasing iterations resulted  
in a slight improvement in cost.  
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num_particles = 40,  
max_iter = 50,  
w = 1,  
c1 = 1.5, c2 = 1.5  
 

Best Schedule: [7 1 0 4 6 5 3 8 9 2]  
Best Cost: 113  
 

Increasing particles but  
decreasing iterations led  
to a higher cost, suggesting 
overpopulation issues.  

num_particles = 50,  
max_iter = 20,  
w = 1,  
c1 = 1.5, c2 = 1.5  

Best Schedule: [4 1 7 5 0 6 9 8 3 2]  
Best Cost: 116  

Further increase in  
particles and a decrease in  
iterations resulted in the  
highest cost, indicating  
inefficiency.  

 
These results highlight the importance of fine-tuning parameters to balance exploration and exploitation effectively. Optimal 

parameter selection is essential for the efficient application of the PSO algorithm in job scheduling. The comparative experiments 
summarized in Table 4 highlight how variations in PSO parameters impact scheduling efficiency and job completion time. The baseline 
configuration, with 30 particles and 100 iterations, achieved a best cost of 112, demonstrating convergence but leaving room for further 
optimization. Reducing the number of particles to 20 while increasing iterations to 200 resulted in a lower best cost of 110, indicating 
improved performance through extended exploration time. Conversely, increasing the particle count to 40 but limiting iterations to 50 led 
to a slightly higher cost of 113, suggesting that a larger swarm without sufficient iterations may hinder convergence. The configuration 
with the highest particle count (50) and the fewest iterations (20) performed worst, with a cost of 116, highlighting inefficiency due to 
inadequate convergence time despite a broader search space. These findings underscore the importance of balancing swarm size and 
iteration depth to effectively harness PSO’s capabilities. Optimal parameter tuning is crucial for enhancing job scheduling performance 
and minimizing total completion time. 

This study offers a nuanced perspective on the application of Particle Swarm Optimization (PSO) in job scheduling, particularly when 
contrasted with prior research. While earlier studies have often emphasized the benefits of larger swarm sizes for enhanced global 
search capabilities, the present results suggest that merely increasing the number of particles does not necessarily lead to improved 
performance. For instance, configurations with a high particle count but limited iterations resulted in suboptimal outcomes, highlighting 
the importance of sufficient iteration depth for convergence. This observation aligns with the insights from Sarathambekai and 
Umamaheswari (2017), who emphasized the significance of balancing exploration and exploitation in PSO to avoid premature 
convergence and ensure efficient scheduling in multiprocessor systems. Furthermore, the study by Subramoney and Nyirenda (2020) 
on workflow scheduling in cloud-fog environments corroborates the notion that hybrid approaches, which often incorporate extended 
Iteration schemes  can yield better optimization results compared to standard PSO configurations. In contrast, some earlier works, such 
as the study by Yen and Ivers (2009), have advocated for the use of multiple independent swarms to enhance search diversity and 
prevent local optima entrapment in job-shop scheduling problems. While this approach has its merits, the current findings underscore 
that without adequate iteration depth, the benefits of increased swarm size or multiple swarms may not be fully realized. 

 

 
5.0 Conclusion and Recommendation 
This paper demonstrates the effectiveness of PSO for solving job scheduling problems, particularly in minimizing task completion time. 
It enhances the field by validating PSO's rapid convergence capability and its advantage in avoiding local optima through global search 
strategies. The study highlights PSO's adaptability, simplicity, and low computational demands, making it highly practical for complex, 
resource-intensive scheduling environments like manufacturing and logistics. By experimenting with various parameter settings, the 
paper identifies optimal configurations such as fewer particles, more iterations, and balanced cognitive and social coefficients that 
improve solution quality. 

PSO has proven to be a highly beneficial approach for job scheduling due to its global search ability, flexibility, and ease of 
implementation. The findings emphasize that fine-tuning the algorithm’s parameters can significantly enhance performance, leading to 
better optimization outcomes without excessive computational overhead. However, more extensive comparisons could be made with 
other metaheuristic algorithms, such as genetic algorithms or ant colony optimization, to benchmark PSO’s performance across diverse 
scheduling scenarios. Additionally, incorporating hybrid approaches that combine PSO with problem-specific heuristics or machine 
learning techniques could further improve efficiency and robustness. Applying the method to dynamic and real-time scheduling 
environments, where tasks and constraints change over time, would also extend its practical relevance. 
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Paper Contribution to Related Field of Study 
The contribution of this paper lies in demonstrating the effectiveness of PSO for job scheduling problems, specifically in minimizing task 
completion time. It adds to the field by validating PSO's ability to rapidly converge on optimal or near-optimal schedules in complex 
environments. This work underscores PSO's practical value in industries like manufacturing and logistics, where efficient scheduling 
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directly impacts resource utilization and cost reduction. By showcasing PSO's adaptability and performance, the paper provides a basis 
for the broader application of swarm intelligence techniques in operational optimization tasks. 
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