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Abstract  
Cardiac arrhythmias, which can lead to stroke or heart failure, require early detection for effective treatment. This study evaluates deep learning 
models—CNNs, RNNs, and LSTMs—for ECG classification, with LSTMs achieving top accuracy: 97.3% (PTB), 93.11% (ECG-ID), and 96.81% (MIT-
BIH). Hybrid CNN-LSTM models further improve performance on imbalanced data. These results highlight deep learning’s potential, particularly LSTMs, 
in enhancing arrhythmia detection and supporting more accurate, automated diagnoses. 
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1.0 Introduction  
Cardiovascular diseases rank among the leading causes of death globally [1]. In particular, cardiac arrhythmias are irregular heartbeats 
that lead to serious health complications, including stroke and heart failure. The electrocardiogram (ECG) is a non-invasive test that 
analyzes the electrical activity of the heart and is essential for identifying arrhythmias in both clinical and remote monitoring situations. 
Early detection and accurate classification of arrhythmias through ECG analysis are vital for effective treatment and patient care. 
However, Traditional ECG interpretation often falls short due to signal complexity and variability. Recent deep learning advancements 
have transformed automated analysis by enabling accurate arrhythmia detection through automatic feature extraction from raw ECG 
data, eliminating the need for manual engineering. 

Despite these advancements, significant challenges persist in achieving high accuracy in ECG classification for arrhythmia detection. 
Variability in ECG morphology across individuals, noise artifacts from ambulatory monitoring systems, and imbalanced datasets pose 
substantial barriers. Additionally, developing computationally efficient models suitable for deployment in real-time scenarios, such as 
wearable devices, remains an ongoing research focus.  
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The study aims to address the challenges in arrhythmia detection by employing advanced models, including Convolutional Neural 
Networks (CNNs), Long Short-Term Memory Networks (LSTMs), and Transformer-based architectures. The contributions of this 
research are the review and evaluation of deep learning models on diverse ECG datasets to identify the most effective architectures. 

This paper is designed to be a narrative review and the rest of the paper is organized as follows: Section 2 reviews related work in 
automated arrhythmia detection and deep learning approaches. Section 3 details the methodology, including dataset preparation, 
architectural design, and experimental setup. Section 4 presents the results and performance analysis, followed by a discussion in 
Section 5. Finally, Section 6 concludes the paper and outlines potential directions for future research. 
 

Nomenclature  
ML    Machine Learning – A subset of AI that enables computers to learn patterns from data without explicit programming. 
DL    Deep Learning- A specialized branch of ML that uses deep neural networks for automatic feature learning. 
ECG  Electrocardiogram – A test that records the electrical activity of the heart. 
CNN  Convolutional Neural Network – A deep learning model designed for image and signal processing. 
RNN  Recurrent Neural Network – A deep learning model for sequential data analysis. 
LSTM Long Short-Term Memory – A type of RNN designed to capture long-term dependencies in sequences. 

 
 

2.0 Background and related work  
 
2.1 Cardiac Arrhythmia  
Cardiac arrhythmia refers to an abnormal variation in heart rate caused by an irregular heartbeat that impairs blood flow [2]. In a normal 
heartbeat, the heart's electrical system ensures the regularity and timing of each beat. However, arrhythmia disrupts this rhythm, causing 
it to become abnormally fast, slow, or irregular [3]. Arrhythmias come in various forms, and each type can be identified by examining 
specific patterns in the ECG waveform. Table 1 shows the major types of arrhythmias. These arrhythmias can be detected and classified 
using ECG signals, which reflect the heart’s electrical activity. 
 

Table 1. Types of Arrhythmias 
Types of Arrhythmias Description Types of Arrhythmias 

Tachycardia The heartbeats are beating too fast, with 
a rate over 100 beats per minute. 

Tachycardia 

Bradycardia The heartbeats are beating slowly, 
commonly less than 60 beats per minute. 

Bradycardia 

Atrial Fibrillation (AFib) The atria beat irregularly and too fast, 
which can lead to poor blood flow. It is a 

common type of arrhythmia. 

Atrial Fibrillation 
(AFib) 

(Source:) Xiao, Q et al (2023)  

 
2.2 Traditional ECG analysis 

 
Fig. 1: ECG Waveform 
  (Source:) Isin et al (2017) 

 

Table 2. ECG Waveform Key Component 
Key Components Description Key Components 

P Wave  It represents the electrical activity that leads to 
the contraction of the atria which is the upper 

chamber of the heart.  

P Wave  

QRS Complex Depicts the electrical impulses responsible for 
contraction of the ventricles (the heart's lower 
chambers) which are vital for pumping blood 

through the body. 

QRS Complex 

T Wave  Shows the process of ventricular 
repolarization, where the ventricles recover T 

prepares for the next heartbeat. 

T Wave  

(Source:) Isin et al (2017)   
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2.3 Deep learning for ECG classification   
Deep learning, a subset of artificial intelligence (AI), mimics how the human brain processes information using artificial neural networks 
with many layers. These models automatically learn from large datasets, identifying intricate patterns in ECG signals without manual 
feature extraction. The deeper the network, the more complex features it can recognize, improving its accuracy in tasks like ECG 
classification. 

The emergence of deep learning has opened up new avenues for improving the accuracy and efficiency of ECG classification. 
Bizopoulos and Koutsouries offered a comprehensive summary of how deep learning is utilized in cardiology, highlighting the various 
methodologies and architectures employed in their systematic review. Unlike traditional machine learning techniques, deep learning 
models possess the ability to automatically learn from large datasets and identify complex, intricate patterns within ECG signals. This 
capability makes them particularly effective at detecting subtle irregularities in the heart's rhythm, which may indicate various types of 
arrhythmias that could otherwise be overlooked by conventional methods.  

One of the key advantages of deep learning is its ability to automatically extract relevant features from raw ECG data, eliminating 
the need for manual intervention. This feature is critical in detecting subtle heart conditions and ensuring robust detection across diverse 
patient populations. Deep learning models also handle learning the variability in ECG signals, improving generalization and reducing 
misdiagnosis. Several deep learning architectures have been employed for ECG classification tasks, including convolutional neural 
networks (CNNs), recurrent neural networks (RNNs), and long short-term memory networks (LSTMs).  

CNNs are a type of deep learning model particularly well-suited for analyzing spatial data, such as images or signals like ECG. 
CNNs use convolutional layers to automatically detect spatial features within the input data, making them highly effective in tasks that 
require understanding local dependencies. For instance, in the context of medical data like ECG signals, CNNs can identify patterns 
related to heartbeats by processing the data through multiple convolutional layers, each layer progressively capturing more complex 
features. This allows CNNs to excel in tasks like image recognition and signal classification [6][7]. 

RNNs are designed to process sequential data by maintaining a form of memory of previous inputs through internal states making 
RNNs particularly powerful in applications where the order of data points matters, such as time-series analysis or natural language 
processing. In medical applications, RNNs can analyze sequences of ECG signals over time, helping to detect anomalies or patterns 
associated with different types of arrhythmias. However, traditional RNNs can struggle with long-term dependencies due to issues like 
vanishing gradients [7].  

As the last model, LSTM networks are a specialized type of Recurrent Neural Network (RNN) designed to process sequential data. 
LSTMs are specifically aimed at addressing the limitations of traditional RNNs. To overcome the limitations of standard RNNs, 
particularly in capturing long-term dependencies, LSTMs introduce mechanisms like gates that regulate the flow of information, allowing 
the network to maintain relevant information over longer sequences. This capability makes LSTMs especially effective in tasks where it 
is crucial to remember information over extended periods, such as predicting future events based on long sequences of past data [6][7]. 

Usually, a deep learning model goes through the same steps as a machine learning model. Three processing steps, including data 
understanding and preprocessing, deep learning model building and training, and validation and interpretation, make up a deep learning 
workflow to address real-world issues, according to Sarker I.H. (2021) [19] as shown in Figure 2. Nevertheless, feature extraction in the 
deep learning model is automated as opposed to manual, in contrast to machine learning modelling. Examples of machine learning 
techniques that are frequently employed in a variety of application areas include k-nearest neighbour, support vector machines, decision 
trees, random forests, naive Bayes, linear regression, association rules, and k-means clustering. Convolution neural networks, recurrent 
neural networks, autoencoders, deep belief networks, and many more are included in the deep learning model, talked about in brief with 
their possible areas of application. 

Table 3. Key Properties and Dependencies of Deep Learning 
Key Properties and 
Dependencies of DL 

Description 

Data Dependencies  Deep learning needs large datasets for good performance 
Hardware Dependencies  Deep learning requires extensive computation for large datasets, 

making GPUs essential for efficient training. 
Featuring Engineering 
Process 

Feature engineering involves extracting attributes from raw data using 
domain knowledge. 

(Source:) Sarker I.H (2021) 

 
Fig.2:  Deep Learning Work-Flow to Solve Real-World Problems 

    (Source:) Sarker I.H (2021) 
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As a result of its ability to process a large number of features and create an efficient data-driven model, deep learning modelling is 
essential when working with large amounts of data. In order to create and train DL models, it uses parallelised tensor and matrix 
operations, gradient computation, and optimisation [19]. 

In this study, the performance of CNNs, RNNs, and LSTMs in detecting arrhythmias is investigate. These models have shown 
potential in various time-series analysis tasks, but a comprehensive comparison in the context of ECG signals remains necessary. In 
this review, the hybrid models that combine the strengths of CNNs and RNNs/LSTMs to improve classification accuracy also will be 
explored. 
 
 

3.0 Comparison of deep learning architectures for ECG classification  
This study explores the benefits of hybrid models to improve the accuracy and reliability of arrhythmia detection, contributing to better 
cardiovascular care. Table 3 presents a detailed comparison of deep learning models for ECG classification. 
 CNNs have demonstrated exceptional capability in feature extraction for ECG arrhythmia classification by processing spatial 
data and capturing local patterns in ECG signals. Studies like Murat et al. (2020) reported an impressive accuracy of 99.26% using the 
MIT-BIH database, emphasizing the effectiveness of convolutional layers and pooling for dimensionality reduction. Similarly, Xu & Liu 
(2020) achieved accuracies ranging from 99.41% to 99.49% by incorporating dropout mechanisms to handeep learninge noise in ECG 
signals, while Avanzato & Beritelli (2020) highlighted real-time applications, achieving an average accuracy of 98.33% with cloud-based 
ECG monitoring systems. 
 RNNs, on the other hand, excel in analyzing sequential data and capturing long-term dependencies, making them highly 
suitable for ECG signals. For instance, Minic et al. (2023) utilized RNNs with particle swarm optimization (PSO) for hyperparameter 
tuning, achieving 91.87% accuracy and incorporating SHAP analysis to improve interpretability. LSTMs further address challenges like 
the vanishing gradient problem, effectively capturing temporal dependencies in ECG data. Jyotishi & Dandapat (2020) developed an 
LSTM model with accuracies between 91.65% and 97.3% across multiple datasets by focusing on intra- and inter-beat temporal features, 
while Toma & Choi (2022) incorporated LSTM layers in a hybrid model to achieve 99.58% accuracy, effectively managing imbalanced 
data challenges. 
 Comparative analysis showed LSTMs outperforming other models in ECG arrhythmia classification, achieving 97.3%, 93.11%, 
and 96.81% accuracy on the PTB, ECG-ID, and MIT-BIH datasets. Common evaluation metrics included Accuracy, Sensitivity, 
Specificity, Precision, F1 Score, and Cohen’s Kappa. Hybrid models proved most effective, especially for imbalanced data and complex 
patterns, by leveraging the combined strengths of CNNs and RNNs/LSTMs. 
 

Table 3. Comparison of Deep Learning Models 
Year Author And Tittle Model Dataset & 

collection 
method 

Description Evaluation 
Matric 

Accuracy Type Of 
Arrythmias 

2023 Minic, A., Jovanovic, L., Bacanin, N., 
Stoean, C., Zivkovic, M., Spalevic, P., 
... & Stoean, R. (2023). Applying 
recurrent neural networks for 
anomaly detection in 
electrocardiogram sensor data. 
Sensors, 23(24), 9878. 

RNN  MIT-BIH 
database  
Collected 
via 
continuous 
ECG 
monitoring 
using 
sensors that 
record 
heart's 
electrical 
signals over 
time. 

Uses RNNs for ECG 
anomaly detection, fine-
tuned with a modified PSO 
algorithm. SHAP analysis 
highlights critical ECG 
features for better 
interpretability. 

Accuracy 
 
Precision 
 
Recall  
 
F1 Score 
 
Cohen’s 
Kappa 

91.8695%, The paper does 
not detail the 
specific types of 
arrhythmias 
detected 

2020 Murat, F., Yildirim, O., Talo, M., 
Baloglu, U. B., Demir, Y., & Acharya, 
U. R. (2020). Application of deep 
learning techniques for heartbeats 
detection using ECG signals-analysis 
and review. Computers in biology and 
medicine, 120, 103726. 

CNN MIT-BIH 
Arrhythmia 
Database, 
- The data 
gathered 
using 
ongoing 
monitoring. 
Sensors 
continuously 
captured the 
heart’s 
electrical 
signals over 
time. 
 
 
 

CNNs extract ECG features 
and reduce dimensionality, 
while optimized layers 
improve performance. 

Accuracy 
 

Sensitivity 
(Recall) 

 
Specificity  

 
Precision  

 
F1-Score  

99.26% Normal Beats 
(N) 
 
Atrial Premature 
Beat (APB) 
 
Left Bundeep 
learninge 
Branch Block 
(LBBB) 
 
Right Bundle 
Branch Block 
(RBBB) 
 
Premature 
Ventricular 
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Contraction 
(PVC) 

2020 Murat, F., Yildirim, O., Talo, M., 
Baloglu, U. B., Demir, Y., & Acharya, 
U. R. (2020). Application of deep 
learning techniques for heartbeats 
detection using ECG signals-analysis 
and review. Computers in biology and 
medicine, 120, 103726. 

CNN-
LSTM 

MIT-BIH 
Arrhythmia 
Database, 
The data 
gathered 
using 
ongoing 
monitoring. 
Sensors 
continuously 
captured the 
heart’s 
electrical 
signals over 
time. 
 

Combines CNN’s spatial 
feature extraction with 
LSTM’s temporal analysis 
to improve ECG 
classification, particularly 
for detecting subtle 
patterns. 

Accuracy. 
 

Sensitivity 
(Recall) 

 
Specificity 

 
Precision 

 
F1-Score 

99.26% Normal Beats 
(N) 
 
Atrial Premature 
Beat (APB) 
 
Left Bundle 
Branch Block 
(LBBB) 
 
Right Bundle 
Branch Block 
(RBBB) 
 
Premature 
Ventricular 
Contraction 
(PVC) 

        
        
        
        

 
2020 Toma, T. I., & Choi, S. 

(2022). A parallel cross 
convolutional recurrent 
neural network for 
automatic imbalanced 
ECG arrhythmia detection 
with continuous wavelet 
transform. Sensors, 
22(19), 7396. 

CNN-
RNN(LSTM) 

MIT-BIH Arrhythmia 
Database 
Data was collected 
with annotated ECGs 
sampled at 360 Hz, 
using the MLII lead 
for analysis. 
 
 

A 1D CNN with batch 
normalization and 
pooling layers 
achieves high 
accuracy and 
robustness for 
automatic heart 
disease detection. 

Accuracy 
 

Positive 
Predictive 
Value 
(PPV) 

 
Sensitivity 
(SE)  

 
F1 Score 
(F1) 

99.58% Non-Ectopic Cardiac Beat 
(NB) 
 
Supraventricular Ectopic 
Beat (SVEB) 
 
Ventricular Ectopic Beat 
(VEB) 
 
Fusion Beat (FB) 
 
Unknown Beat (QB) 

2020 Jyotishi, D., & Dandapat, 
S. (2020). An LSTM-
based model for person 
identification using ECG 
signal. IEEE Sensors 
Letters, 4(8), 1-4. 

LSTM  PTB Database 
-Includes 290 healthy 
and diseased 
subjects. Segmented 
ECGs 
 
MIT-BIH Arrhythmia 
Database 

 -Data from 47 

subjects with 
arrhythmias, 
segmented without 
fiducial points 

ECG-ID Database -
From 90 healthy 
subjects, ECGs were 
segmented with 
sliding windows for 
intra/inter-session 
testing. 
CYBHi Database 
-Off-the-person 
ECGs from 63 
subjects in remote 
settings. Sliding 
window segmentation 

LSTM-based model for 
person identification 
using ECG, capturing 
intra-beat variations for 
better classification 
accuracy. 

Accuracy  91.65 The paper does not 
explicitly detail the 
specific types of 
arrhythmias detected. 
However, it mentions the 
use of the MIT-BIH 
Arrhythmia Database, 

2020 Avanzato, R., & Beritelli, 
F.   

CNN MIT-BIH Arrhythmia 
Database  
The data was 
collected through 
continuous ECG 
monitoring. Sensors 
recorded the heart’s 
electrical signals over 
time. 
 

A 1D CNN with batch 
normalization and 
pooling layers 
achieves high 
accuracy and 
robustness for 
automatic heart 
disease detection. 

Accuracy 
 

Sensitivity 
(True 
Positive 
Rate) 

 
Specificity 
(True 

 Normal 
Atrial Premature Beat 
(APB) 
 
Premature Ventricular 
Contraction (PVC). 
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 Negative 
Rate) 

 
F1 Score 

 
False 
Positive 
Ratio 

 
False 
Negative 
Ratio  

2020 Xu, X., & Liu, H. (2020). 
ECG heartbeat 
classification using 
convolutional neural 
networks. IEEE access, 8, 
8614-8619. 

CNN MIT-BIH Arrhythmia 
Database.  
Continuous ECG 
monitoring was used 
for data collection. It 
involved sensors 
tracking the heart's 
electrical activity over 
time. 
 

CNN-based ECG 
classification model 
with noise filtering, 
stratified sampling, and 
dropout regularization 
to enhance 
generalization. 

Accuracy 
 

Sensitivity   
Positive 
predictive 
value 
+FPTP 

 
 
 

99.41%-
99.49% 

Non-Ectopic Beat (N) 
Supra Ventricular Ectopic 
Beat (SVEB, S) 
Ventricular Ectopic Beat 
(VEB, V) 
 
Fusion Beat (F) 
 
Unknown Beat (Q) 

 

 
4.0 Discussion and future directions   
Deep learning models have emerged as a transformative approach in the detection and classification of cardiac arrhythmias, leveraging 
their capability for automatic high-level feature extraction and robust classification. These models, particularly Convolutional Neural 
Networks (CNNs) and Recurrent Neural Networks (RNNs), demonstrate substantial improvements over traditional machine learning 
methods in terms of accuracy, adaptability, and clinical utility. 

 
4.1 Strengths of deep learning models  
One of the most significant advantages of deep learning methods is their ability to extract relevant features directly from raw 
electrocardiogram (ECG) signals without requiring extensive domain-specific knowledge for feature engineering. For instance, CNNs 
have shown accuracies exceeding 95% for arrhythmias like Atrial Fibrillation (AF) and Ventricular Ectopic Beats (VEB), with small CNN 
architectures sometimes outperforming more complex models such as GoogLeNet, achieving over 91% accuracy. Additionally, RNNs 
excel in preserving temporal variations in ECG data, enabling the identification of both short-term and long-term dependencies, crucial 
for classifying arrhythmias like Supraventricular Ectopic Beats (SVEB) and Premature Atrial Contractions (PAC). The integration of Long 
Short-Term Memory (LSTM) networks further enhances performance by addressing vanishing gradient issues common in traditional 
RNNs [18]. 

Deep learning methods have also demonstrated versatility by accurately classifying a wide range of arrhythmias, including 
Myocardial Infarction (MI) and Premature Ventricular Contractions (PVC), across various datasets like the MIT-BIH Arrhythmia Database 
and INCART Database. These datasets provide a solid foundation for training and validating deep learning models, with evaluation 
metrics such as sensitivity, specificity, precision, and F1 scores ensuring comprehensive performance assessment. 
 
4.2 Challenges and barriers  
Despite their promise, several challenges hinder the full potential of deep learning in arrhythmia detection. The primary concern lies in 
the generalizability of these models. While high accuracies have been reported on specific datasets, their performance across diverse 
hospitals and patient populations remains inconsistent. This limitation highlights the need for larger, more diverse training datasets and 
domain adaptation techniques to bridge the gap between research and clinical applications. 

Another critical challenge is the interpretability of deep learning models. Clinicians often require transparent and understandable 
decision-making processes to trust these systems fully. Current efforts to improve model interpretability, such as attention mechanisms 
and visualization of learned features, are promising but require further refinement. 

Noise in ambulatory ECG signals presents an additional obstacle. Although deep learning models are adept at identifying hidden 
patterns in noisy data, the integration of advanced noise reduction techniques can further enhance their performance. Combining 
traditional signal processing methods with deep learning architectures offers a pathway to more reliable and noise-resilient arrhythmia 
detection systems. 
 
4.3 Future directions   
The integration of deep learning models with wearable devices and real-time monitoring systems holds significant potential for advancing 
ambulatory monitoring. RNNs, in particular, can process continuous data streams, while combining these models with electronic health 
records (EHRs) allows for a more comprehensive analysis of patient-specific risk factors, such as age, surgery history, and frequency 
of hospital visits. 
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Moreover, research into smaller, more efficient deep learning architectures can address computational constraints in real-time 
systems. Transfer learning and domain adaptation techniques should also be explored to ensure that models trained on specific datasets 
generalize effectively to broader clinical contexts. Finally, efforts to enhance dataset diversity, model interpretability, and noise reduction 
will further establish deep learning as a cornerstone in arrhythmia detection and management. 

In conclusion, this narrative review highlights the potential of deep learning models—particularly CNNs, LSTMs, and Transformer-
based architectures—in advancing arrhythmia detection. While these models offer high accuracy and flexibility, addressing challenges 
such as generalizability, interpretability, and noise resilience remains key for their clinical integration. 
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