Development of an Airflow Monitoring System for Air Handling Unit using IoT

Authors

  • Fadhilah Aman Faculty of Information Management, Universiti Teknologi MARA, Selangor Branch, Shah Alam, Malaysia
  • Muhammad Akmal Rifdie Faculty of Information Science & Engineering, Management & Science University, Shah Alam, Selangor, Malaysia
  • Mohd Abdullah Mohammad Ganteh Faculty of Information Science & Engineering, Management & Science University, Shah Alam, Selangor, Malaysia
  • Ahmad Faiz Hussin Faculty of Information Science & Engineering, Management & Science University, Shah Alam, Selangor, Malaysia
  • Khairul Huda Yusof Faculty of Information Science & Engineering, Management & Science University, Shah Alam, Selangor, Malaysia
  • Ahmad Sukri Ahmad PETRONAS Research Sdn. Bhd. Lot 3288 & 3289, Off Jln Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor, Malaysia

DOI:

https://doi.org/10.21834/ebpj.v7iSI10.4128

Keywords:

Airflow, IoT, Temperature, Humidity, Air Handling Unit

Abstract

This paper presents the development of an airflow monitoring system for air handling units using NodeMCU ESP32. The main purpose of this project is to improvise the use of microcontroller with on-par performance for industrial applications. This proposed system consists of two sensors that measure airflow from the air handling unit. The first sensor is an airflow speed, which measures the airflow speed from the air handling unit. The second sensor detects and indicates the temperature and humidity of the airflow. The testing parameters show very good correlations among variables, indicating the efficiency of the system to monitor the airflow.

References

Abbas Helmi, R.A., Eddy Yusuf, S.S., Jamal, A. & Abdullah, M.I. (2019). Face Recognition Automatic Class Attendance System (FRACAS). 2019 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), pp. 50-55. DOI: 10.1109/I2CACIS.2019.8825049.

Aggarwal, R. & Lal Das, M. (2012) RFID Security in the Context of “Internet of Things”. First International Conference on Security of Internet of Things, Kerala, 17-19 August 2012, pp. 51-56. http://dx.doi.org/10.1145/2490428.2490435

Aman, F., Thiran, T.P., Huda Yusof, K. and Sapari, N.M. (20220). IoT Gas Leakage Detection, Alert, and Gas Concentration Reduction System. 2022 IEEE 12th Symposium on Computer Applications & Industrial Electronics (ISCAIE), pp. 55-60, doi: 10.1109/ISCAIE54458.2022.9794559.

Bentley, J.P. Principles of Measurement Systems, 4th ed.; Pearson/Prentice Hall: Harlow, UK, 2005; pp. 439–443.

Deekshath Dharanya, R. P., Dimpil Kabadia, G., Deepak Dinakaran, K. R., & Shanthini, S. (2018). IoT Based Environmental Monitoring System using Arduino UNO and Thingspeak. IJSTE-International Journal of Science Technology & Engineering, 4(9).

Han, D., Kim, S. & Park, S. (2009). Two-dimensional ultrasonic anemometer using the directivity angle of an ultrasonic sensor. Microelectron. 39(10), pp. 1195–1199.

Hirata, S., Kurosawa, M.K. & Katagiri, T. (2009). Real-time ultrasonic distance measurements for autonomous mobile robots using cross-correlation by single-bit signal processing. In Proceedings of the IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009, pp. 3601–3606.

Jamal, A., Kumar, D., Abbas Helmi, R.A. & Fong, S.L. (2019). Portable TOR Router with Raspberry Pi. In Proceedings of the 2019 8th International Conference on Software and Computer Applications (ICSCA'19). Association for Computing Machinery, pp. 533–537. DOI:https://doi.org/10.1145/3316615.3316694

Leong, C.Y. (2019). Fault Detection and Diagnosis of Air Handling Unit: A Review. MATEC Web of Conferences, 255, 06001. https://doi.org/10.1051/matecconf/201925506001

Mohamed, M. N., Ghanesen, Y., Al-Zubaidi, S., Ali, M.A., Al-Sanjary, O.I. & Zamani, N.S. (2019). Investigation of carbon monoxide monitoring and alert system for vehicles. In 2019 IEEE 15th International Colloquium on Signal Processing & Its Applications (CSPA), pp. 239-242.

Ronneseth, O., Liu, P., Justo-Alonso, M., & Mathisen, H. M. (2019). Techniques for airflow measurements to determine the real efficiency of heat recovery in ventilation systems. IOP Conference Series: Earth and Environmental Science, 352(1). https://doi.org/10.1088/1755-1315/352/1/012068

Roulet, C., Deschamps, L & Foradini, F. (1999). Measurement of Air Flow Rates and Ventilation Efficiency in Air Handling Units. Indoor Air’99, Edinburgh, pp. 1–6. Yusof, K.H. et al. (2022). Design and Development of Real Time Indoor and Outdoor Air Quality Monitoring System Based on IoT Technology. IEEE 18th International Colloquium on Signal Processing & Applications (CSPA), pp. 101-104, doi: 10.1109/CSPA55076.2022.9781937.

Widi, B.D., Mohammed, M.N., Al-Zubaidi, S. & Yusuf, E. (2020). Environment indoor air quality assessment using fuzzy inference system. ICT Express, 6(3), pp. 185- 194.

Downloads

Published

2022-11-30

How to Cite

Aman, F., Rifdie, M. A., Mohammad Ganteh, M. A., Hussin, A. F., Yusof, K. H., & Ahmad, A. S. (2022). Development of an Airflow Monitoring System for Air Handling Unit using IoT. Environment-Behaviour Proceedings Journal, 7(SI10), 241–247. https://doi.org/10.21834/ebpj.v7iSI10.4128