Urban Microclimate Impacts on Aedes Mosquitoes’ Life Cycle: A Concept Paper

Authors

  • Murni Amirra Mohd Aminuddin Centre of Environmental Health and Safety, Faculty of Health Sciences, Universiti Teknologi MARA Puncak Alam Campus, Selangor, Malaysia
  • Nazri Che Dom Centre of Environmental Health and Safety, Faculty of Health Sciences, Universiti Teknologi MARA Puncak Alam Campus, Selangor, Malaysia
  • Mitoriana Porusia Faculty of Health Science Universitas Muhammadiyah Surakarta, Kabupaten Sukoharjo, Jawa Tengah, Indonesia
  • Siti Rohana Mohd Yatim Centre of Environmental Health and Safety, Faculty of Health Sciences, Universiti Teknologi MARA Puncak Alam Campus, Selangor, Malaysia

DOI:

https://doi.org/10.21834/e-bpj.v8i25.4866

Keywords:

Urban Microclimate, Aedes Spp., Aedes Life Cycle

Abstract

Aedes aegypti and Aedes albopictus are two types of Aedes spp. responsible for the spreading of dengue in urban settings. Over the years, dengue remained a significant public health concern due to its disease burden worldwide. Urban microclimate factors such as temperature, relative humidity, and rainfall have long been known to influence the increase or decrease of Aedes spp. density in urban settings due to their impact on the mosquitoes' life cycle. This concept paper intends to provide a conceptual framework for determining the impact of urban microclimate on the Aedes mosquito development life cycle in urban settings.

References

Abd Majid, N., & Muhamad Rasdi, R. (2020). Dengue Hotspot Detection in Bangi, Selangor, Malaysia. IOP Conference Series: Earth and Environmental Science, 540(1). https://doi.org/10.1088/1755-1315/540/1/012041 DOI: https://doi.org/10.1088/1755-1315/540/1/012041

Akhtar, R., Gupta, P. T., & Srivastava, A. K. (2016). Urbanization, Urban Heat Island Effects and Dengue Outbreak in Delhi. In Climate Change and Human Health Scenario in South and Southeast Asia (pp. 99–111). Springer International Publishing Switzerland. https://doi.org/10.1007/978-3-319-23684-1 DOI: https://doi.org/10.1007/978-3-319-23684-1_7

Araujo, R. V., Albertini, M. R., Costa-da-Silva, A. L., Suesdek, L., Franceschi, N. C. S., Bastos, N. M., Katz, G., Cardoso, V. A., Castro, B. C., Capurro, M. L., & Allegro, V. L. A. C. (2015). São Paulo urban heat islands have a higher incidence of dengue than other urban areas. The Brazilian Journal of Infectious Diseases, 19(2), 146–155. https://doi.org/10.1016/j.bjid.2014.10.004 DOI: https://doi.org/10.1016/j.bjid.2014.10.004

Arévalo-Cortés, A., Granada, Y., Torres, D., & Triana-chavez, O. (2022). Differential Hatching, Development, Oviposition, and Longevity Patterns among Colombian Aedes aegypti Populations. DOI: https://doi.org/10.3390/insects13060536

Awang, Mohd. F., & Che Dom, N. (2020). The effect of temperature on the development of immature stages of Aedes spp. against breeding containers. International Journal of Global Warming, 21(3), 215. https://doi.org/10.1504/ijgw.2020.10030526 DOI: https://doi.org/10.1504/IJGW.2020.10030526

Centers for Disease Control and Prevention. (2022, June 2). Aedes Species Eggs, Larvae, Pupae, and Adults: Mosquitoes Image Gallery. https://www.cdc.gov/mosquitoes/gallery/aedes/index.html#

Dalpadado, R., Amarasinghe, D., & Gunathilaka, N. (2022). Water quality characteristics of breeding habitats in relation to the density of Aedes aegypti and Aedes albopictus in domestic settings in Gampaha district of Sri Lanka. Acta Tropica, 229, 106339. https://doi.org/https://doi.org/10.1016/j.actatropica.2022.106339 DOI: https://doi.org/10.1016/j.actatropica.2022.106339

de Jesús Crespo, R., & Rogers, R. E. (2022). Habitat Segregation Patterns of Container Breeding Mosquitos: The Role of Urban Heat Islands, Vegetation Cover, and Income Disparity in Cemeteries of New Orleans. DOI: https://doi.org/10.3390/ijerph19010245

Edillo, F., Ymbong, R. R., Bolneo, A. A., Hernandez, R. J., Fuentes, B. L., Cortes, G., Cabrera, J., Lazaro, J. E., & Sakuntabhai, A. (2022). Temperature, season, and latitude influence development-related phenotypes of Philippine Aedes aegypti (Linnaeus): Implications for dengue control amidst global warming. Parasites and Vectors, 15(1). https://doi.org/10.1186/s13071-022-05186-x DOI: https://doi.org/10.1186/s13071-022-05186-x

Evans, M. V., Hintz, C. W., Jones, L., Shiau, J., Solano, N., Drake, J. M., & Murdock, C. C. (2019). Microclimate and larval habitat density predict adult aedes albopictus abundance in urban areas. American Journal of Tropical Medicine and Hygiene, 101(2), 362–370. https://doi.org/10.4269/ajtmh.19-0220 DOI: https://doi.org/10.4269/ajtmh.19-0220

Hii, Y. L., Zaki, R. A., Aghamohammadi, N., & Rocklöv, J. (2016). Research on Climate and Dengue in Malaysia: A Systematic Review. Current Environmental Health Reports, 3(1), 81–90. https://doi.org/10.1007/s40572-016-0078-z DOI: https://doi.org/10.1007/s40572-016-0078-z

Jin, H., Cui, P., Wong, N. H., & Ignatius, M. (2018). Assessing the effects of urban morphology parameters on microclimate in Singapore to control the urban heat island effect. Sustainability (Switzerland), 10(1). https://doi.org/10.3390/su10010206 DOI: https://doi.org/10.3390/su10010206

Li, J., Mao, Y., Ouyang, J., & Zheng, S. (2022). A Review of Urban Microclimate Research Based on CiteSpace and VOSviewer Analysis. In International Journal of Environmental Research and Public Health (Vol. 19, Issue 8). MDPI. https://doi.org/10.3390/ijerph19084741 DOI: https://doi.org/10.3390/ijerph19084741

Marinho, R. A., Beserra, E. B., Bezerra-Gusmão, M. A., Porto, V. de S., Olinda, R. A., & dos Santos, C. A. C. (2016). Effects of temperature on the life cycle, expansion, and dispersion of Aedes aegypti (Diptera: Culicidae) in three cities in Paraiba, Brazil. Journal of Vector Ecology, 41(1), 1–10. https://doi.org/10.1111/jvec.12187 DOI: https://doi.org/10.1111/jvec.12187

Muturi, E. J., Blackshear, M., & Montgomery, A. (2012). Temperature and density-dependent effects of the larval environment on Aedes aegypti competence for an alphavirus. Journal of Vector Ecology, 37(1), 154–161. https://doi.org/10.1111/j.1948-7134.2012.00212.x DOI: https://doi.org/10.1111/j.1948-7134.2012.00212.x

Reinhold, J. M., Lazzari, C. R., & Lahondère, C. (2018). Effects of the environmental temperature on Aedes aegypti and Aedes albopictus mosquitoes: A review. In Insects (Vol. 9, Issue 4). MDPI AG. https://doi.org/10.3390/insects9040158 DOI: https://doi.org/10.3390/insects9040158

Rocklöv, J., & Tozan, Y. (2019). Climate change and the rising infectiousness of dengue. Emerging Topics in Life Sciences, 3(2), 133–142. https://doi.org/10.1042/ETLS20180123 DOI: https://doi.org/10.1042/ETLS20180123

Scolari, F., Casiraghi, M., & Bonizzoni, M. (2019). Aedes spp. and Their Microbiota: A Review. In Frontiers in Microbiology (Vol. 10). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2019.02036 DOI: https://doi.org/10.3389/fmicb.2019.02036

Sukiato, F., Wasserman, R. J., Foo, S. C., Wilson, R. F., & Cuthbert, R. N. (2019). The effects of temperature and shading on mortality and development rates of Aedes aegypti (Diptera: Culicidae). Journal of Vector Ecology, 44(2), 264–270. https://doi.org/10.1111/jvec.12358 DOI: https://doi.org/10.1111/jvec.12358

Teo, C. H. J., Lim, P. K. C., Voon, K., & Mak, J. W. (2017). Detection of dengue viruses and Wolbachia in Aedes aegypti and Aedes albopictus larvae from four urban localities in Kuala Lumpur, Malaysia. Tropical Biomedicine, 34(3), 583–597.

Wan Mohamad Ali, W. N., Ahmad, R., Mohamed Nor, Z., Abdul Rahman, T., & Lim, Y. A.-L. (2021). Spatial Distribution of Mosquito Vector in Dengue Outbreak Areas in Kuala Lumpur and Selangor, Malaysia. In Serangga (Vol. 2021, Issue 3). https://www.iqiglobal.com/blog/3-common-myths-of-urban-suburban-areas/

Downloads

Published

2023-07-31

How to Cite

Mohd Aminuddin, M. A., Che Dom, N., Porusia , M., & Mohd Yatim, S. R. (2023). Urban Microclimate Impacts on Aedes Mosquitoes’ Life Cycle: A Concept Paper. Environment-Behaviour Proceedings Journal, 8(25), 215–221. https://doi.org/10.21834/e-bpj.v8i25.4866

Issue

Section

Urban Environment / Urban Psychology