Effect of Sucrose Amounts on the Bacterial Cellulose Membrane's Breathability Properties

Authors

  • Mohd Iqbal Misnon Textile Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
  • Amira Syazwani Mustafa Kamal Textile Science and Fashion Technology Programme, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
  • Muhammad Ismail Ab Kadir Textile Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
  • Mohd Fakharul Zaman Raja Yahya Molecular Microbial Pathogenicity Research Group, Pharmaceutical and Life Sciences Community of Research, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia

DOI:

https://doi.org/10.21834/e-bpj.v9iSI17.5446

Keywords:

Acetobacter Xylinum , Bacterial Cellulose Membrane , Breathability, Porosity

Abstract

This study aims to produce a bacteria cellulose (BC) membrane. The critical parameter controlled in this study was the amount of carbon source during the production. The effects of carbon source concentrations on BC membrane properties, such as yield, thickness, and breathability, were evaluated. The BCs' yields and thicknesses were increased with the higher concentration of sucrose utilised during the production process. By weighing and observing the BC membranes, sample BCS10.0 possessed the highest yield and thickness. Nonetheless, the lowest yield and thickness of BC membrane (1.374%, 0.07mm) produced a high mean pore diameter (16.909Å) and increased permeability of water vapour (4242.23g/m2/day).

References

AL-Kalifawi, E. J., & Hassan, I. A. (2014). Factors Influence on the yield of bacterial cellulose of Kombucha (Khubdat Humza). Baghdad Science Journal, 11(3), 1420-1428. DOI: https://doi.org/10.21123/bsj.2014.11.3.1420-1428

Al-Shamary, E. E., & Al-Darwash, A. K. (2013). Influence of fermentation condition and alkali treatment on the porosity and thickness of bacterial cellulose membranes. The Online Journal of Science and Technology, 3(2).

Cacicedo, M. L., Castro, M. C., Servetas, I., Bosnea, L., Boura, K., Tsafrakidou, P., Dima, A., Terpou, A., Koutinas, A., & Castro, G. R. (2016, 8//). Progress in bacterial cellulose matrices for biotechnological applications. Bioresource Technology, 213, 172-180. https://doi.org/http://dx.doi.org/10.1016/j.biortech.2016.02.071 DOI: https://doi.org/10.1016/j.biortech.2016.02.071

Esa, F., Tasirin, S. M., & Rahman, N. A. (2014, 2014/01/01). Overview of Bacterial Cellulose Production and Application. Agriculture and Agricultural Science Procedia, 2, 113-119. https://doi.org/http://dx.doi.org/10.1016/j.aaspro.2014.11.017 DOI: https://doi.org/10.1016/j.aaspro.2014.11.017

Feng, X., Ullah, N., Wang, X., Sun, X., Li, C., Bai, Y., Chen, L., & Li, Z. (2015). Characterisation of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917. Journal of food science, 80(10), E2217-E2227. DOI: https://doi.org/10.1111/1750-3841.13010

Gallegos, A. M. A., Carrera, S. H., Parra, R., Keshavarz, T., & Iqbal, H. M. (2016). Bacterial Cellulose: A Sustainable Source to Develop Value-Added Products–A Review. BioResources, 11(2), 5641-5655. DOI: https://doi.org/10.15376/biores.11.2.Gallegos

Gao, M., Li, J., Bao, Z., Hu, M., Nian, R., Feng, D., An, D., Li, X., Xian, M., & Zhang, H. (2019). A natural in situ fabrication method of functional bacterial cellulose using a microorganism. Nature communications, 10(1), 1-10. DOI: https://doi.org/10.1038/s41467-018-07879-3

Heydorn, R. L., Lammers, D., Gottschling, M., & Dohnt, K. (2023). Effect of food industry by-products on bacterial cellulose production and its structural properties. Cellulose, 30(7), 4159-4179. DOI: https://doi.org/10.1007/s10570-023-05097-9

Jagannath, A., Kalaiselvan, A., Manjunatha, S., Raju, P., & Bawa, A. (2008). The effect of pH, sucrose and ammonium sulphate concentrations on the production of bacterial cellulose (Nata-de-coco) by Acetobacter xylinum. World Journal of Microbiology and Biotechnology, 24(11), 2593-2599. DOI: https://doi.org/10.1007/s11274-008-9781-8

Jinka, S., Behrens, R., Korzeniewski, C., Singh, V., Arunachalam, A., Parameswaran, S., Coimbatore, G., Kendall, R., Wolf, R., & Ramkumar, S. (2013). Atmospheric pressure plasma treatment and breathability of polypropylene nonwoven fabric. Journal of Industrial Textiles, 42(4), 501-514. https://doi.org/10.1177/1528083712464257 DOI: https://doi.org/10.1177/1528083712464257

Kamiński, K., Jarosz, M., Grudzień, J., Pawlik, J., Zastawnik, F., Pandyra, P., & Kołodziejczyk, A. M. (2020). Hydrogel bacterial cellulose: A path to improved materials for new eco-friendly textiles. Cellulose, 27, 5353-5365. DOI: https://doi.org/10.1007/s10570-020-03128-3

Keshk, S. M. (2014). Bacterial cellulose production and its industrial applications. Journal of Bioprocessing & Biotechniques, 2014. DOI: https://doi.org/10.4172/2155-9821.1000150

Liu, K., Du, H., Zheng, T., Liu, H., Zhang, M., Zhang, R., ... & Si, C. (2021). Recent advances in cellulose and its derivatives for oilfield applications. Carbohydrate Polymers, 259, 117740. DOI: https://doi.org/10.1016/j.carbpol.2021.117740

Mancini, C. E., Berndt, C. C., Sun, L., & Kucuk, A. (2001, August 01). Porosity determinations in thermally sprayed hydroxyapatite coatings [journal article]. Journal of Materials Science, 36(16), 3891-3896. https://doi.org/10.1023/a:1017905818479 DOI: https://doi.org/10.1023/A:1017905818479

Pathak, H., & Prasad, A. (2014). Applications and Prospects of Microbial Polymers in Textile Industries. J Textile Sci Eng, 4, 172. DOI: https://doi.org/10.4172/2165-8064.1000172

Provin, A. P., dos Reis, V. O., Hilesheim, S. E., Bianchet, R. T., de Aguiar Dutra, A. R., & Cubas, A. L. V. (2021). Use of bacterial cellulose in the textile industry and the wettability challenge—a review. Cellulose, 28(13), 8255-8274. DOI: https://doi.org/10.1007/s10570-021-04059-3

Ruka, D. R., Simon, G. P., & Dean, K. M. (2013, 2/15/). In situ modifications to bacterial cellulose with the water insoluble polymer poly-3-hydroxybutyrate. Carbohydrate Polymers, 92(2), 1717-1723. https://doi.org/http://dx.doi.org/10.1016/j.carbpol.2012.11.007 DOI: https://doi.org/10.1016/j.carbpol.2012.11.007

Saibuatong, O.-a., & Phisalaphong, M. (2010, 1/20/). Novo aloe vera–bacterial cellulose composite film from biosynthesis. Carbohydrate Polymers, 79(2), 455-460. https://doi.org/http://dx.doi.org/10.1016/j.carbpol.2009.08.039 DOI: https://doi.org/10.1016/j.carbpol.2009.08.039

Seddiqi, H., Oliaei, E., Honarkar, H., Jin, J., Geonzon, L. C., Bacabac, R. G., & Klein-Nulend, J. (2021). Cellulose and its derivatives: Towards biomedical applications. Cellulose, 28(4), 1893-1931. DOI: https://doi.org/10.1007/s10570-020-03674-w

Sharma, P., Mittal, M., Yadav, A., & Aggarwal, N. K. (2023). Bacterial cellulose: Nano-biomaterial for biodegradable face masks–A greener approach towards environment. Environmental Nanotechnology, Monitoring & Management, 19, 100759. DOI: https://doi.org/10.1016/j.enmm.2022.100759

Shezad, O., Khan, S., Khan, T., & Park, J. K. (2010). Physicochemical and mechanical characterisation of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy. Carbohydrate Polymers, 82(1), 173-180. DOI: https://doi.org/10.1016/j.carbpol.2010.04.052

Tang, W., Jia, S., Jia, Y., & Yang, H. (2010). The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane. World Journal of Microbiology and Biotechnology, 26(1), 125-131. DOI: https://doi.org/10.1007/s11274-009-0151-y

Ul-Islam, M., Khan, T., & Park, J. K. (2012, 4/2/). Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydrate Polymers, 88(2), 596-603. https://doi.org/http://dx.doi.org/10.1016/j.carbpol.2012.01.006 DOI: https://doi.org/10.1016/j.carbpol.2012.01.006

Downloads

Published

2024-01-07

How to Cite

Misnon, M. I., Mustafa Kamal, A. S., Ab Kadir, M. I., & Raja Yahya, M. F. Z. (2024). Effect of Sucrose Amounts on the Bacterial Cellulose Membrane’s Breathability Properties . Environment-Behaviour Proceedings Journal, 9(SI17), 425–430. https://doi.org/10.21834/e-bpj.v9iSI17.5446