Characterization of Microcrystalline Cellulose Isolated from Paper Sludge

Authors

  • Siti Nuramirah Rabbani Muhammad Zaki Eco-Technology Department, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Irmaizatussyehdany Buniyamin NANO-SciTech Laboratory, Centre for Functional Materials and Nanotechnology (FMN), Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Mohamad Rusop Mahmood NANO-SciTech Laboratory, Centre for Functional Materials and Nanotechnology (FMN), Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Mohd Nazarudin Zakaria Eco-Technology Department, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

DOI:

https://doi.org/10.21834/e-bpj.v9iSI17.5449

Keywords:

Paper Sludge, Microcrystalline Cellulose, Wastepaper, Acid Hydrolysis

Abstract

The large amount of paper sludge generated from wastepaper industries emphasizes the importance of developing green waste management. The study aimed to characterize microcrystalline cellulose from paper sludge using different acid concentrations. The properties of chemical composition, morphological, thermal, reflectance, and crystallinity index were accessed. The disappearance of peaks in FTIR was related to the removal of amorphous structure. SEM confirmed the reduction in diameter with the decomposed temperature of 266°C. 3.0 M reflects the highest UVB at 28% and UVA at 39% due to the highest crystallinity index of 31%, which is possible for reinforcement application in film packaging.

References

Abdullah, R., Ishak, C. F., Kadir, W. R., & Bakar, R. A. (2016). Application of raw and composted recycled paper mill sludge on the growth of khaya senegalensis and their effects on soil nutrients and heavy metals. International Journal of Agriculture and Biology, 18(1), 52–60. https://doi.org/10.17957/IJAB/15.0061 DOI: https://doi.org/10.17957/IJAB/15.0061

Adu, C., Zhu, C., Jolly, M., Richardson, R. M., & Eichhorn, S. J. (2021). Continuous and sustainable cellulose filaments from ionic liquid dissolved paper sludge nanofibres. Journal of Cleaner Production, 280. https://doi.org/10.1016/j.jclepro.2020.124503 DOI: https://doi.org/10.1016/j.jclepro.2020.124503

Akatan, K., Kabdrakhmanova, S., Kuanyshbekov, T., Ibraeva, Z., Battalova, A., Joshy, K. S., & Thomas, S. (2022). Highly-efficient isolation of microcrystalline cellulose and nanocellulose from sunflower seed waste via an environmentally benign method. Cellulose, 29(7), 3787–3802. https://doi.org/10.1007/s10570-022-04527-4 DOI: https://doi.org/10.1007/s10570-022-04527-4

Asif, M., Ahmed, D., Ahmad, N., Qamar, M. T., Alruwaili, N. K., & Bukhari, S. N. A. (2022). Extraction and characterization of microcrystalline cellulose from lagenaria siceraria fruit pedicles. Polymers, 14(9). https://doi.org/10.3390/polym14091867 DOI: https://doi.org/10.3390/polym14091867

Burhani, D., Septevani, A. A., Setiawan, R., Djannah, L. M., & Muhammad, A. P. P. (2022). The effect of the drying process of cellulose nanofiber from oil palm empty fruit bunches on morphology. IOP Conference Series: Earth and Environmental Science, 1034(1), 012033. https://doi.org/10.1088/1755-1315/1034/1/012033 DOI: https://doi.org/10.1088/1755-1315/1034/1/012033

Daud, Z., Rahman, S. E. A., Awang, H., Abubakar, M. H., Ridzuan, M. B., & Tajarudin, H. A. (2018). Utilization of waste paper sludge as an alternative adsorbent for the adsorption of ammonia nitrogen and cod in stabilized landfill leachate. International Journal of Integrated Engineering, 10(9), 105–109. https://doi.org/10.30880/ijie.2018.10.09.002 DOI: https://doi.org/10.30880/ijie.2018.10.09.002

Do, M. H., Van Thi Khuat, K., Huynh, P. T., Nguyen, L. N. T., Do, B. H., Pham, P. D., Nguyen, H. D., Nguyen, H. M., & Thach, U. D. (2022). Synthesis, characterization, and antibacterial activity of amino-functionalized microcrystalline cellulose derivatives from cotton fibers. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-02391-7 DOI: https://doi.org/10.1007/s13399-022-02391-7

Du, H., Parit, M., Wu, M., Che, X., Wang, Y., Zhang, M., Wang, R., Zhang, X., Jiang, Z., & Li, B. (2020). Sustainable valorization of paper mill sludge into cellulose nanofibrils and cellulose nanopaper. Journal of Hazardous Materials, 400. https://doi.org/10.1016/j.jhazmat.2020.123106 DOI: https://doi.org/10.1016/j.jhazmat.2020.123106

Gichuki, J., Kareru, P. G., Gachanja, A. N., & Ngamau, C. (2022). Characteristics of microcrystalline cellulose from coir fibers. Journal of Natural Fibers, 19(3), 915–930. https://doi.org/10.1080/15440478.2020.1764441 DOI: https://doi.org/10.1080/15440478.2020.1764441

Glińska, K., Lerigoleur, C., Giralt, J., Torrens, E., & Bengoa, C. (2020). Valorization of cellulose recovered from wwtp sludge to added value levulinic acid with a brønsted acidic ionic liquid. Catalysts, 10(9), 1–16. https://doi.org/10.3390/catal10091004 DOI: https://doi.org/10.3390/catal10091004

Hasanin, M. S., Kassem, N., & Hassan, M. L. (2021). Preparation and characterization of microcrystalline cellulose from olive stones. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-01423-y DOI: https://doi.org/10.1007/s13399-021-01423-y

Krishnan, S. G., Pua, F. ling, & Zhang, F. (2022). Oil palm empty fruit bunch derived microcrystalline cellulose supported magnetic acid catalyst for esterification reaction: An optimization study. Energy Conversion and Management: X, 13. https://doi.org/10.1016/j.ecmx.2021.100159 DOI: https://doi.org/10.1016/j.ecmx.2021.100159

Mamat Razali, N. A., Ismail, M. F., & Abdul Aziz, F. (2021). Characterization of nanocellulose from indica rice straw as reinforcing agent in epoxy-based nanocomposites. Polymer Engineering and Science, 61(5), 1594–1606. https://doi.org/10.1002/pen.25683 DOI: https://doi.org/10.1002/pen.25683

Mohammad, T. M. N. A., Yeheye, W., & Muhd, J. N. (2020). Synthesis and characterization of nanocrystalline celllose as reinforcement in nitrile butadiene rubber composites. Cellulose Chemistry and Technology, 54(1), 11–25.

Nurhadi, B., Angeline, A., Sukri, N., Masruchin, N., Arifin, H. R., & Saputra, R. A. (2022). Characteristics of microcrystalline cellulose from nata de coco: Hydrochloric acid versus maleic acid hydrolysis. Journal of Applied Polymer Science, 139(5). https://doi.org/10.1002/app.51576 DOI: https://doi.org/10.1002/app.51576

Sucinda, E. F., Abdul Majid, M. S., Ridzuan, M. J. M., Cheng, E. M., Alshahrani, H. A., & Mamat, N. (2021). Development and characterisation of packaging film from napier cellulose nanowhisker reinforced polylactic acid (pla) bionanocomposites. International Journal of Biological Macromolecules, 187(July), 43–53. https://doi.org/10.1016/j.ijbiomac.2021.07.069 DOI: https://doi.org/10.1016/j.ijbiomac.2021.07.069

Tang, L., Liao, J., Dai, H., Liu, Y., & Huang, H. (2021). Comparison of cellulose nanocrystals from pineapple residues and its preliminary application for pickering emulsions. Nanotechnology, 32(49). https://doi.org/10.1088/1361-6528/ac21f1 DOI: https://doi.org/10.1088/1361-6528/ac21f1

Tarabanko, N., Baryshnikov, S. V., Kazachenko, A. S., Miroshnikova, A. V., Skripnikov, A. M., Lavrenov, A. V., Taran, O. P., & Kuznetsov, B. N. (2022). Hydrothermal hydrolysis of microcrystalline cellulose from birch wood catalyzed by al2o3-b2o3 mixed oxides. Wood Science and Technology, 56(2), 437–457. https://doi.org/10.1007/s00226-022-01363-4 DOI: https://doi.org/10.1007/s00226-022-01363-4

Tawalbeh, M., Rajangam, A. S., Salameh, T., Al-Othman, A., & Alkasrawi, M. (2021). Characterization of paper mill sludge as a renewable feedstock for sustainable hydrogen and biofuels production. International Journal of Hydrogen Energy, 46(6), 4761–4775. DOI: https://doi.org/10.1016/j.ijhydene.2020.02.166

Tkachenko, T., Sheludko, Y., Yevdokymenko, V., Kamenskyh, D., Khimach, N., Povazhny, V., Filonenko, M., Aksylenko, M., & Kashkovsky, V. (2022). Physico-chemical properties of flax microcrystalline cellulose. Applied Nanoscience (Switzerland), 12(4), 1007–1020. DOI: https://doi.org/10.1007/s13204-021-01819-2

Vasu, S., Abu Bakar, A. H., Teh, K. C., & Leng Chew, I. M. (2021). Extraction of nanocrystalline cellulose from Kapok fiber as potential water-resistant composite. IOP Conference Series: Earth and Environmental Science, 765(1). DOI: https://doi.org/10.1088/1755-1315/765/1/012090

Vilarinho, F., Stanzione, M., Buonocore, G. G., Barbosa-Pereira, L., Sendón, R., Vaz, M. F., & Sanches Silva, A. (2021). Green tea extract and nanocellulose embedded into polylactic acid film: Properties and efficiency on retarding the lipid oxidation of a model fatty food. Food Packaging and Shelf Life, 27. DOI: https://doi.org/10.1016/j.fpsl.2020.100609

Wibowo, A., Madani, H., Judawisastra, H., Restiawaty, E., Lazarus, C., & Budhi, Y. W. (2018). An eco-friendly preparation of cellulose nano crystals from oil palm empty fruit bunches. IOP Conference Series: Earth and Environmental Science, 105(1). DOI: https://doi.org/10.1088/1755-1315/105/1/012059

Yu, F., Fei, X., He, Y., & Li, H. (2021). Poly(lactic acid)-based composite film reinforced with acetylated cellulose nanocrystals and zno nanoparticles for active food packaging. International Journal of Biological Macromolecules, 186(July), 770–779. DOI: https://doi.org/10.1016/j.ijbiomac.2021.07.097

Downloads

Published

2024-01-07

How to Cite

Muhammad Zaki, S. N. R., Buniyamin, I., Mahmood , M. R., & Zakaria , M. N. (2024). Characterization of Microcrystalline Cellulose Isolated from Paper Sludge . Environment-Behaviour Proceedings Journal, 9(SI17), 455–460. https://doi.org/10.21834/e-bpj.v9iSI17.5449