Possible Application of Activated Palm Kernel Shell (APKS) from Palm Oil Industry as Potential Filler in Carboxylated Nitrile Butadiene Rubber (XNBR)

Authors

  • Siti Nur Liyana Mamauod Center for Chemical Synthesis & Polymer Technology, Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Syazwani Aqilah Zainal Rashid Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Nahrul Hayawin Zainal Green Products Development, Biomass Technology Unit, Engineering and Processing Division, Malaysian Palm Oil Board, Malaysia
  • Hanafi Ismail School of Materials & Mineral Resources Eng., USM Eng. Campus, 14300 Nibong Tebal, Penang, Malaysia

DOI:

https://doi.org/10.21834/e-bpj.v9iSI17.5452

Keywords:

Activated Palm Kernel Shell, Biofiller , Carboxylated Nitrile Butadiene Rubber , Mechanical Properties

Abstract

In this study, different APKS loadings from 0 phr to 50 phr were incorporated into the carboxylated butadiene rubber (XNBR). The average filler particle size was identified as between 1.217 to 31.944μm based on particle size analysis. The curing, crosslink density, tensile properties, and morphology values of the APKS-filled XNBR were studied. The incorporated APKS has increased the crosslink density, delta torque, cure time (t90), and decreased the swelling degree of the XNBR. The overall mechanical properties were enhanced due to the mechanical interlocking of rubber-filler phases until the optimum APKS loading which was 40 phr.

References

Abidin, Z. Z., Mamauod, S. N. L., Sarkawi, S. S., & Saimi, N. S. B. (2020). Influence of Filler System on the Cure Characteristics and Mechanical Properties of Butyl Reclaimed Rubber. Bioresources, 5, 6045-6060. DOI: https://doi.org/10.15376/biores.15.3.6045-6060

Aini, N. A. M., Othman, N., Hussin, M. H., Sahakaro, K., & Hayeemasae, N. (2020). Lignin as Alternative Reinforcing Filler in the Rubber Industry: A Review. Frontiers in Materials.

Amin, S., Bachmann, P. T., & Yong, S. K. (2020). Oxidised Biochar from Palm Kernel Shell for Eco-friendly Pollution Management. Scientific Research Journal, 17, 44-60. DOI: https://doi.org/10.24191/srj.v17i2.10001

Ban, S.-E., Lee, E.-J., Lim, D.-J., Kim, I.-S., & Lee, J.-W. (2022). Evaluation Of Sulfuric Acid-Pretreated Biomass-Derived Biochar Characteristics And Its Diazinon Adsorption Mechanism. Bioresource Technology. DOI: https://doi.org/10.2139/ssrn.3994570

Christopher, G. Robertson, Ned J, & Hardman. (2021). Nature of Carbon Black Reinforcement of Rubber: Perspective on the Original Polymer Nanocomposite. Polymers DOI: https://doi.org/10.52202/064426-0006

Fatin, M. H., Noriman, N. Z., Husin, K., Salihin, M. Z., Munirah, N. R., Ismail, H., Bakri, A. M. M. A., & Sam, S. T. (2015). Cure Characteristics and Physical Properties of Imperata cylindrica Activated Carbon Filled SMR L Compounding. Scientific.Net, 44-48. DOI: https://doi.org/10.4028/www.scientific.net/AMM.815.44

Greenough, S., Dumont, M.-J. e., & Prasher, S. (2021). The Physicochemical Properties Of Biochar And Its Applicability As A Filler In Rubber Composites: A Review. Elservier. DOI: https://doi.org/10.1016/j.mtcomm.2021.102912

Hsiao, Shivam Gupta, Chi-Young Lee, & Tai, N.-H. (2023). Effects of Physical and Chemical Activations on the Performance of Biochar Applied in Supercapacitors. Applied Surface Science DOI: https://doi.org/10.1016/j.apsusc.2022.155560

L.Ekwueme, O.Ogbobe, & O.G.Tenebe. (2016). Utilization Of Carbonized Palm Kernel Shell As Filler In Natural Rubber Composite. 1(1), 1-8.

Lay, M., Rusli, A., Abdullah, M. K., a, Z. A. A. H., & Shuib, R. K. (2020). Converting Dead Leaf Biomass Into Activated Carbon As A Potential Replacement For Carbon Black Filler In Rubber Composites. Elservier. DOI: https://doi.org/10.1016/j.compositesb.2020.108366

Mehdi, Barikani, & Mehburn. (2022). Determination of Crosslink Density by Swelling in the Castable Polyurethane Elastomer Based on 1/4 - Cyclohexane Diisocyanate and Para-phenylene Diisocyanate. Iranian Journal of Polymer Science & Technology, 1(1).

Ong, E. S., Rabbani, A. H., Habashy, M. M., Abdeldayem, O. M., Al-Sakkari, E. G., & Rene, E. R. (2021). Palm Oil Industrial Wastes As A Promising Feedstock For Biohydrogen Production: A Comprehensive Review Environmental Pollution. DOI: https://doi.org/10.1016/j.envpol.2021.118160

Prajapati Naik, Smitirupa Pradhan, P. Sahoo, & Acharya., S. K. (2020). Effect of Filler Loading on Mechanical Properties of Natural Carbon Black Reinforced Polymer Composites. Materials Today: Proceedings.

Paleri, D. M., Rodriguez-Uribe, A., Misra, M., & Mohanty, A. K. (2021). Preparation And Characterization Of Eco-Friendly Hybrid Biocomposites From Natural Rubber, Biocarbon, And Carbon Black. eXPRESS Polymer Letters, 15, 236–249. DOI: https://doi.org/10.3144/expresspolymlett.2021.21

Raju, G., Khalid, M., Shaban, M. M., & Azahari, B. (2021). Preparation and Characterization of Eco-Friendly Spent Coffee/ENR50 Biocomposite in Comparison to Carbon Black. Polymer, 13. DOI: https://doi.org/10.3390/polym13162796

Sakhiya, A. K., Anand, A., & Kaushal, P. (2020). Production, Activation, And Applications Of Biochar In Recent Times. Springer Science. https://doi.org/https://doi.org/10.1007/s42773-020-00047-1 DOI: https://doi.org/10.1007/s42773-020-00047-1

Stephanie, Greenough, Marie-Josée Dumont, & Prasher, S. (2021). The Physicochemical Properties of Biochar and Its Applicability as a Filler in Rubber Composites: A Review. Materials Today Communications DOI: https://doi.org/10.1016/j.mtcomm.2021.102912

Somseemee, O., Pongdhorn, Sae-Oui, & Siriwonga, C. (2021). Reinforcement Of Surface-Modified Cellulose Nanofibrils Extracted From Napier Grass Stem In Natural Rubber Composites. Elservier, 171. DOI: https://doi.org/10.1016/j.indcrop.2021.113881

Downloads

Published

2024-01-07

How to Cite

Mamauod, S. N. L., Zainal Rashid , S. A., Zainal , N. H., & Ismail, H. (2024). Possible Application of Activated Palm Kernel Shell (APKS) from Palm Oil Industry as Potential Filler in Carboxylated Nitrile Butadiene Rubber (XNBR) . Environment-Behaviour Proceedings Journal, 9(SI17), 461–468. https://doi.org/10.21834/e-bpj.v9iSI17.5452