Modelling the Above-Ground Biomass (AGB) of Eucalyptus Plantations using WorldView-2 Imagery in Sabah, Malaysia

Authors

  • Ahmad Farid Mohsin Faculty if Applied Sciences, Universiti Teknologi MARA Selangor, 40450 Shah Alam, Selangor, Malaysia
  • Mohd Nazip Suratman Faculty if Applied Sciences, Universiti Teknologi MARA Selangor, 40450 Shah Alam, Selangor, Malaysia; Institute for Biodiversity and Sustainable Development, Universiti Teknologi MARA Selangor, 40450 Shah Alam, Selangor, Malaysia

DOI:

https://doi.org/10.21834/e-bpj.v9iSI17.5455

Keywords:

Forest Plantations, Above Ground Biomass (AGB) , Eucalyptus Grandis , Eucalytus Pellita, Predictive Models , WorldView-2

Abstract

Forest plantations are established not only to provide supply of demands, but also to help mitigate climate change. Satellite remote sensing can be used to estimate above ground biomass (AGB). This study was conducted in Eucalyptus plantations in Sabah, Malaysia. Satellite images from WorldView-2 were acquired as primary data. Allometric functions were used to calculate the AGB. The individual bands and vegetation indices were used as predictor variables. From the analysis, the ‘best’ predictive model for AGB was . The predictive model recorded an I2=0.71, RMSE=0.44 tha-1 and p=0.001. The predicted AGB ranged from 4 to 225 tha-1.

References

Ahern, J, Erdle, T, Maclean, DA & Kneppeck, ID 1991, ‘A quantitative relationship between forest growth rates and Thematic Mapper reflectance measurements’, International Journal of Remote Sensing, vol. 13, no. 2, pp. 387 – 400. DOI: https://doi.org/10.1080/01431169108929660

Ardö, J 1992, ‘Volume quantification of coniferous forest compartments using spectral radiance recorded by Landsat Thematic Mapper’, International Journal of Remote Sensing, vol. 13, no. 9, pp. 779–786. DOI: https://doi.org/10.1080/01431169208904227

Ching, OT 2018, Malaysia's 2017 timber exports to surpass RM23b, New Straits Time, viewed 25 September 2018, <https://www.nst.com.my/business/2018/01/327221/malaysias-2017-timber-exports-surpass-rm23b>.

Edekunle, VAJ, Nair, KN, Srivastana, AK & Singh, NK 2013, ‘Models and form factors for stand volume estimation in natural forest ecosystems: a case study of Katarniaghat Wildife Sanctuary (KGWS), Bahraich District, India’, Journal of Forestry Research, vol. 24, no. 2, pp. 217–226. DOI: https://doi.org/10.1007/s11676-013-0347-8

Gemmell, FM 1995, ‘Effects of forest cover, terrain and scale on timber volume estimation with Thematic Mapper data in a rocky mountain site’, Remote Sensing of Environment, vol. 51, pp. 291–305. DOI: https://doi.org/10.1016/0034-4257(94)00056-S

Hall, RJ, Shakun, RS, Arsenault, EJ & Case, BS 2006, ‘Modelling forest stand structure attributes using Landsat 7 ETM+ data: application to mapping of aboveground biomass and stand volume’, Forest Ecology and Management, vol. 225, pp. 378 – 390. DOI: https://doi.org/10.1016/j.foreco.2006.01.014

Hexagon Geospatial Inc. 2018, Erdas Imagine 2018 USA.

Higgins, JPT & Thompson, SG 2002, ‘Quantifying heterogeneity in a meta-analysis’, Statistics in Medicine, vol. 21, pp. 1539-1558. DOI: https://doi.org/10.1002/sim.1186

Higgins, JPT, Thompson, SG, Deeks, JJ & Altman, DG 2003, ‘Measuring inconsistency in meta-analyses’, British Medical Journal, vol. 327, pp. 557-560. DOI: https://doi.org/10.1136/bmj.327.7414.557

Latifah, S, Teodoro, RV, Myrna, GC, Nathaniel, CB & Leonardo MF 2018, ‘Predicted stand volume for Eucalyptus plantations by spatial analysis’, in IOP Conf. Ser.: Earth Environ. Sci. 126 012117. doi: 10.1088/1755-1315/126/1/012117. DOI: https://doi.org/10.1088/1755-1315/126/1/012117

Mäkelä, HA & Pekkarinen, A 2004, ‘Estimation of forest stand volumes by Landsat TM imagery and stand-level field-inventory data’, Forest Ecology and Management, pp. 245 – 255. DOI: https://doi.org/10.1016/j.foreco.2004.02.049

Malaysian Timber Council (MTC) (2012) Malaysia: Forestry & Environment (Facts & Figures), Report from Malaysian Timber Council, September, pp. 28.

Meskimen, G & Franklin, EC 1978, ‘Spacing Eucalyptus grandis in southern Florida a question of merchantable versus total volume’, Southern J. of Applied Forestry, vol. 2, no. 1, pp. 3-5. DOI: https://doi.org/10.1093/sjaf/2.1.3

Mohammadi, J, Shataee S & Babanezhad, M 2011, ‘Estimation of forest stand volume, tree density and biodiversity using Landsat ETM+ data, comparison of linear and regression tree analyses’, Procedia Environmental Sciences, pp. 299 – 304. DOI: https://doi.org/10.1016/j.proenv.2011.07.052

Ripple, WJ, Wand, S, Isaacson, DL & Paine DP 1991, ‘A preliminary comparison of Landsat TM and SPOT-1 HRV multispectral data for estimating coniferous forest volume’, International Journal of Remote Sensing, vol. 12, no. 9, pp. 1971 – 1977. DOI: https://doi.org/10.1080/01431169108955230

SAS Institute Inc. (2018), SAS 9.4. Cary, NC, USA.

Shapiro, S & Wilk, MB 1965, ‘An analysis of variance test for normality (complete sample)’, Biometrika, vol. 52, no. 591–611. DOI: https://doi.org/10.1093/biomet/52.3-4.591

Suratman, MN, Bull, GQ, Leckie, DG, Lemay, VM, Marshall, PL & Mispan, MR 2004, ‘Prediction models for estimating the area, volume, and age of rubber (Hevea brasiliensis) plantations in Malaysia using Landsat TM data’, International Foresty Review, vol. 6, no. 1, pp. 1–12. DOI: https://doi.org/10.1505/ifor.6.1.1.32055

Whittinghill, LJ, Rowe, DB & Cregg, BM 2013, ‘Evaluation of vegetable production on extensive green roofs’, Agroecology and Sustainable Food Systems, vol. 37, no. 4, pp. 465-484. doi: 10.1080/21683565.2012.756847 DOI: https://doi.org/10.1080/21683565.2012.756847

Downloads

Published

2024-01-07

How to Cite

Mohsin, A. F., & Suratman, M. N. (2024). Modelling the Above-Ground Biomass (AGB) of Eucalyptus Plantations using WorldView-2 Imagery in Sabah, Malaysia. Environment-Behaviour Proceedings Journal, 9(SI17), 485–492. https://doi.org/10.21834/e-bpj.v9iSI17.5455