Assessment of Bending Strength of Eucalyptus Pellita Wood by Acoustic Velocity (AV) Technique

Authors

  • Noorsyazwani Mansoor Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang Selangor 43400, Malaysia
  • Adlin Sabrina Muhammad Roseley Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang Selangor 43400, Malaysia; Institute Tropical Forestry and Forest Product (INTROP), Universiti Putra Malaysia, Serdang Selangor 43400, Malaysia
  • Sabiha Salim Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang Selangor 43400, Malaysia
  • Roger Meder Forest Industries Research Centre, University of the Sunshine Coast, QLD, Australia

DOI:

https://doi.org/10.21834/e-bpj.v8iSI17.5974

Keywords:

Acoustic Velocity (AV), Eucalyptus pellita, Bending Strength

Abstract

This study was conducted to validate the bending strength of Eucalyptus pellita using the acoustic velocity method and the conventional method. Acoustic velocity was measured on slabs using Fakopp Microsecond Timer, which relies on the time-of-flight principle. Acoustic velocity was converted to the dynamic modulus of elasticity MOEdyn based on the equation MOEdyn = ρAV2. The conversion equations between MOEdyn and static MOE were established using the regression method. The bending test was conducted according to standard ISO 13061. Results show that the acoustic velocity method can be used to predict the static MOE value.

References

Alwi, A., Meder, R., Japarudin, Y., Hamid, H. A., Sanusi, R., & Yusoff, K. H. M. (2021). Near-infrared spectroscopy of Eucalyptus pellita for foliar nutrients and the potential for real-time monitoring of trees in fertiliser trial plots. Journal of Near Infrared Spectroscopy, 29(3), 158-167.

Ayanleye, S. (2020). Assessment of some wood properties by near-infrared spectroscopy (Doctoral dissertation, University of British Columbia).

Balasso, M., Hunt, M., Jacobs, A., & O'Reilly-Wapstra, J. (2021). Characterisation of wood quality of Eucalyptus nitens plantations and predictive models of density and stiffness with site and tree characteristics. Forest Ecology and Management, 491, 118992.

Duong, D. V., Schimleck, L., Tran, D. L., & Vo, H. D. (2022). Radial and Among-clonal Variations of the Stress-wave Velocity, Wood Density, and Mechanical Properties in 5-year-old Acacia auriculiformis Clones. BioResources, 17(2).

Fundova, I., Funda, T., & Wu, H. X. (2019). Non-destructive assessment of wood stiffness in Scots pine (Pinus sylvestris L.) and its use in forest tree improvement. Forests, 10(6), 491.

Japarudin, Y., Meder, R., Lapammu, M., Alwi, A., & Brown, M. (2022). Non-destructive evaluation of strength and stiffness of Eucalyptus pellita. A comparison of near-infrared spectroscopy and acoustic wave velocity assessment. Journal of Near Infrared Spectroscopy, 30(5), 270-278.

Liu, F., Zhang, H., Wang, X., Jiang, F., Yu, W., & Ross, R. J. (2021). Acoustic Wave Propagation in Standing Trees-Part II. Effects of Tree Diameter and Juvenile Wood. Wood and Fiber Science, 53(2), 95-108.

Marini, F., Manetti, M. C., Corona, P., Portoghesi, L., Vinciguerra, V., Tamantini, S., ... & Romagnoli, M. (2021). Influence of forest stand characteristics on physical, mechanical properties and chemistry of chestnut wood. Scientific Reports, 11(1), 1-10.

Papandrea, S. F., Cataldo, M. F., Bernardi, B., Zimbalatti, G., & Proto, A. R. (2022). The Predictive Accuracy of Modulus of Elasticity (MOE) in the Wood of Standing Trees and Logs. Forests, 13(8), 1273.

Russo, D., Marziliano, P. A., Macri, G., Proto, A. R., Zimbalatti, G., & Lombardi, F. (2019). Does thinning intensity affect wood quality? An analysis of Calabrian Pine in Southern Italy using a non-destructive acoustic method. Forests, 10(4), 303.

Schimleck, L., Dahlen, J., Apiolaza, L. A., Downes, G., Emms, G., Evans, R., ... & Wang, X. (2019). Non-destructive evaluation techniques and what they tell us about wood property variation. Forests, 10(9), 728.

Sharma, V., Yadav, J., Kumar, R., Tesarova, D., Ekielski, A., & Mishra, P. K. (2020). On the rapid and non-destructive approach for wood identification using ATR-FTIR spectroscopy and chemometric methods. Vibrational Spectroscopy, 110, 103097.

Tumenjargal, B., Ishiguri, F., Takahashi, Y., Nezu, I., Baasan, B., Chultem, G., ... & Yokota, S. (2020). Predicting the bending properties of Larix sibirica lumber using nondestructive-testing methods. International Wood Products Journal, 11(3), 115-121.

Van Duong, D., & Schimleck, L. (2022). Prediction of Static Bending Properties of Eucalyptus Clones Using Stress Wave Measurements on Standing Trees, Logs, and Small Clear Specimens. Forests, 13(10), 1728.

Vaughan, D., Auty, D., Dahlen, J., Sánchez Meador, A. J., & Mackes, K. H. (2021). Modeling variation in wood stiffness of Pinus ponderosa using static bending and acoustic measurements. Forestry: An International Journal of Forest Research, 94(2), 232-243.

Downloads

Published

2023-12-31

How to Cite

Mansoor, N., Muhammad Roseley, A. S., Salim, S., & Meder, R. (2023). Assessment of Bending Strength of Eucalyptus Pellita Wood by Acoustic Velocity (AV) Technique. Environment-Behaviour Proceedings Journal, 8(SI17), 539–544. https://doi.org/10.21834/e-bpj.v8iSI17.5974