Assessment of Bending Strength of Eucalyptus Pellita Wood by Acoustic Velocity (AV) Technique
DOI:
https://doi.org/10.21834/e-bpj.v9iSI17.5974Keywords:
Acoustic Velocity (AV), Eucalyptus pellita, Bending StrengthAbstract
This study was conducted to validate the bending strength of Eucalyptus pellita using the acoustic velocity method and the conventional method. Acoustic velocity was measured on slabs using Fakopp Microsecond Timer, which relies on the time-of-flight principle. Acoustic velocity was converted to the dynamic modulus of elasticity MOEdyn based on the equation MOEdyn = ρAV2. The conversion equations between MOEdyn and static MOE were established using the regression method. The bending test was conducted according to standard ISO 13061. Results show that the acoustic velocity method can be used to predict the static MOE value.
References
Alwi, A., Meder, R., Japarudin, Y., Hamid, H. A., Sanusi, R., & Yusoff, K. H. M. (2021). Near-infrared spectroscopy of Eucalyptus pellita for foliar nutrients and the potential for real-time monitoring of trees in fertiliser trial plots. Journal of Near Infrared Spectroscopy, 29(3), 158-167. DOI: https://doi.org/10.1177/09670335211007971
Ayanleye, S. (2020). Assessment of some wood properties by near-infrared spectroscopy (Doctoral dissertation, University of British Columbia). DOI: https://doi.org/10.1080/20426445.2020.1834312
Balasso, M., Hunt, M., Jacobs, A., & O'Reilly-Wapstra, J. (2021). Characterisation of wood quality of Eucalyptus nitens plantations and predictive models of density and stiffness with site and tree characteristics. Forest Ecology and Management, 491, 118992. DOI: https://doi.org/10.1016/j.foreco.2021.118992
Duong, D. V., Schimleck, L., Tran, D. L., & Vo, H. D. (2022). Radial and Among-clonal Variations of the Stress-wave Velocity, Wood Density, and Mechanical Properties in 5-year-old Acacia auriculiformis Clones. BioResources, 17(2). DOI: https://doi.org/10.15376/biores.17.2.2084-2096
Fundova, I., Funda, T., & Wu, H. X. (2019). Non-destructive assessment of wood stiffness in Scots pine (Pinus sylvestris L.) and its use in forest tree improvement. Forests, 10(6), 491. DOI: https://doi.org/10.3390/f10060491
Japarudin, Y., Meder, R., Lapammu, M., Alwi, A., & Brown, M. (2022). Non-destructive evaluation of strength and stiffness of Eucalyptus pellita. A comparison of near-infrared spectroscopy and acoustic wave velocity assessment. Journal of Near Infrared Spectroscopy, 30(5), 270-278. DOI: https://doi.org/10.1177/09670335221117301
Liu, F., Zhang, H., Wang, X., Jiang, F., Yu, W., & Ross, R. J. (2021). Acoustic Wave Propagation in Standing Trees-Part II. Effects of Tree Diameter and Juvenile Wood. Wood and Fiber Science, 53(2), 95-108. DOI: https://doi.org/10.22382/wfs-2021-12
Marini, F., Manetti, M. C., Corona, P., Portoghesi, L., Vinciguerra, V., Tamantini, S., ... & Romagnoli, M. (2021). Influence of forest stand characteristics on physical, mechanical properties and chemistry of chestnut wood. Scientific Reports, 11(1), 1-10. DOI: https://doi.org/10.1038/s41598-020-80558-w
Papandrea, S. F., Cataldo, M. F., Bernardi, B., Zimbalatti, G., & Proto, A. R. (2022). The Predictive Accuracy of Modulus of Elasticity (MOE) in the Wood of Standing Trees and Logs. Forests, 13(8), 1273. DOI: https://doi.org/10.3390/f13081273
Russo, D., Marziliano, P. A., Macri, G., Proto, A. R., Zimbalatti, G., & Lombardi, F. (2019). Does thinning intensity affect wood quality? An analysis of Calabrian Pine in Southern Italy using a non-destructive acoustic method. Forests, 10(4), 303. DOI: https://doi.org/10.3390/f10040303
Schimleck, L., Dahlen, J., Apiolaza, L. A., Downes, G., Emms, G., Evans, R., ... & Wang, X. (2019). Non-destructive evaluation techniques and what they tell us about wood property variation. Forests, 10(9), 728. DOI: https://doi.org/10.3390/f10090728
Sharma, V., Yadav, J., Kumar, R., Tesarova, D., Ekielski, A., & Mishra, P. K. (2020). On the rapid and non-destructive approach for wood identification using ATR-FTIR spectroscopy and chemometric methods. Vibrational Spectroscopy, 110, 103097. DOI: https://doi.org/10.1016/j.vibspec.2020.103097
Tumenjargal, B., Ishiguri, F., Takahashi, Y., Nezu, I., Baasan, B., Chultem, G., ... & Yokota, S. (2020). Predicting the bending properties of Larix sibirica lumber using nondestructive-testing methods. International Wood Products Journal, 11(3), 115-121. DOI: https://doi.org/10.1080/20426445.2020.1735754
Van Duong, D., & Schimleck, L. (2022). Prediction of Static Bending Properties of Eucalyptus Clones Using Stress Wave Measurements on Standing Trees, Logs, and Small Clear Specimens. Forests, 13(10), 1728. DOI: https://doi.org/10.3390/f13101728
Vaughan, D., Auty, D., Dahlen, J., Sánchez Meador, A. J., & Mackes, K. H. (2021). Modeling variation in wood stiffness of Pinus ponderosa using static bending and acoustic measurements. Forestry: An International Journal of Forest Research, 94(2), 232-243. DOI: https://doi.org/10.1093/forestry/cpaa030
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Noorsyazwani Mansoor, Adlin Sabrina Muhammad Roseley, Sabiha Salim, Roger Meder

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.