Reliability of Accuracy-Based Calibration in Quantifying Systematic Errors of Static LiDAR

Authors

  • Nur Nazura Abd Razak College of Built Environment, Universiti Teknologi MARA, Perlis Branch, Arau Campus, 02600 Arau, Perlis, Malaysia
  • Mohd Azwan Abbas College of Built Environment, Universiti Teknologi MARA, Perlis Branch, Arau Campus, 02600 Arau, Perlis, Malaysia
  • Muhammad Aliff Haikal Kamarruzzaman College of Built Environment, Universiti Teknologi MARA, Perlis Branch, Arau Campus, 02600 Arau, Perlis, Malaysia
  • Hery Purwanto Teknik Geodesi ITN Malang Jl. Bendungan Sigura-gura No.2 Malang, Indonesia
  • Norshahrizan Mohd Hashim College of Built Environment, Universiti Teknologi MARA, Perlis Branch, Arau Campus, 02600 Arau, Perlis, Malaysia
  • Mohamad Asrul Mustafar College of Built Environment, Universiti Teknologi MARA, Perlis Branch, Arau Campus, 02600 Arau, Perlis, Malaysia

DOI:

https://doi.org/10.21834/e-bpj.v9i30.6235

Keywords:

TLS self-calibration, Close-range photogrammetry, Point-based constraint, Line-based constraint

Abstract

The calibration of terrestrial laser scanners (TLSs) is crucial for ensuring high-quality 3D data. While system calibration often relies on precision-based methods without reference points, this study explores accuracy-based approaches incorporating reference values. TLS self-calibration was performed using point-based and line-based constraints with reference points established through close-range photogrammetry (CRP). The evaluation assessed calibration parameters (CPs), standard deviation, residuals, and correlation coefficient. Results show that the line-based approach improved accuracy by up to 60%, whereas the point-based method exhibited significant deviations. Consequently, while accuracy-based approaches can enhance TLS self-calibration, the line-based constraint is notably more effective.

References

Abbas, M. A., Fuad, N. A., Idris, K. M., Opaluwa, Y. D., Hashim, N. M., Majid, Z., & Sulaiman, S. A. (2019). Reliability of Terrestrial Laser Scanner Measurement in Slope Monitoring. IOP Conference Series: Earth and Environmental Science, 385. DOI: https://doi.org/10.1088/1755-1315/385/1/012042

Abbas, M. A., Setan, H., Majid, Z., Chong, A. K., Idris, K. M., Ariff, M. F. M., Aspuri, A., Luh, L. C., & Samad, A. M. (2016). Data Quality Assurance for Hybrid and Panoramic Scanners via Self-Calibration. Proceedings of the 2016 6th International Conference on System Engineering and Technology, ICSET 2016, 77–82. DOI: https://doi.org/10.1109/ICSEngT.2016.7849627

Abd Razak, N. N., Abbas, M. A., Azmi, M. A. A. M., Kamaruzzaman, M. A. H., Chong, A. K., Sulaiman, S. A., Mustafar, M. A., & Hashim, N. M (2023). An Outdoor Terrestrial Laser Scanner Data Quality Assurance: Minimizing Point-Based Self-Calibration Network Configuration. MCRJ Special Issue, 20(3), 203–220.

Aryan, A., Bosché, F., & Tang, P. (2021). Planning for Terrestrial Laser Scanning in Construction: A Review. Automation in Construction, 125. El-Din Fawzy, H. (2019). Study The Accuracy of Digital Close Range Photogrammetry Technique Software as A Measuring Tool. Alexandria Engineering Journal, 58, 171–179. DOI: https://doi.org/10.1016/j.aej.2018.04.004

Ghilani, C. D. (2017). Adjustment Computations: Spatial Data Analysis (6th Edition). John Wiley & Sons, Inc., Hoboken, New Jersey. DOI: https://doi.org/10.1002/9781119390664

Karataş, L., Alptekin, A., & Yakar, M. (2022). Creating Architectural Surveys of Traditional Buildings with the Help of Terrestrial Laser Scanning Method (TLS) and Orthophotos: Historical Diyarbakır Sur Mansion. Advanced LiDAR, 2(2), 54–63.

Lichti, D. D. (2007). Error Modelling, Calibration and Analysis of An AM-CW Terrestrial Laser Scanner System. ISPRS Journal of Photogrammetry and Remote Sensing, 61, 307–324. DOI: https://doi.org/10.1016/j.isprsjprs.2006.10.004

Lichti, D. D., Chow, J., & Lahamy, H. (2011). Parameter De-Correlation and Model-Identification in Hybrid-Style Terrestrial Laser Scanner Self-Calibration. ISPRS Journal of Photogrammetry and Remote Sensing, 66, 317–326. DOI: https://doi.org/10.1016/j.isprsjprs.2010.12.001

Luhmann, T., Robson, S., Kyle, S., & Harley, I. (2006). Close Range Photogrammetry: Principles, Techniques and Applications. In Whittles Publishing, Dunbeath Mains Cottages, Dunbeath, Scoland, United Kingdom.

Medić, T., Kuhlmann, H., & Holst, C. (2021). Empirical Evaluation of Terrestrial Laser Scanner Calibration Strategies: Manufacturer-Based, Target-Based and Keypoint- Based. Springer Proceedings in Earth and Environmental Sciences, January, 41–56. DOI: https://doi.org/10.1007/978-3-030-51953-7_4

Reshetyuk, Y. (2009). Self-Calibration and Direct Georeferencing in Terrestrial Laser Scanning. Doctoral thesis in Infrastructure, Royal Institute of Technology (KTH), Stockholm.

Schulz, T. (2007). Calibration of a Terrestrial Laser Scanner for Engineering Geodesy.

Shatz, I. (2024). Assumption-Checking Rather Than (Just) Testing: The Importance of Visualization and Effect Size in Statistical Diagnostics. Behavior Research Methods, 56, 826–845. DOI: https://doi.org/10.3758/s13428-023-02072-x

Wiśniewski, M. (2018). Laser Tracker Calibration Procedure at Central Office of Measures. Journal of Physics: Conference Series, 1065(8). DOI: https://doi.org/10.1088/1742-6596/1065/8/082006

Zhou, T., Cheng, X., Lin, P., Wu, Z., & Liu, E. (2020). A General Point-Based Method for Self-Calibration of T laser Scanners Considering Stochastic Information. Remote Sensing, 12. DOI: https://doi.org/10.3390/rs12182923

Zhou, Y., Zhu, J., Zhao, L., Hu, G., Xin, J., Zhang, H., & Yang, J. (2024). High-Precision Monitoring Method for Bridge Deformation Measurement and Error Analysis Based on Terrestrial Laser Scanning. Remote Sensing, 16, 2263. DOI: https://doi.org/10.3390/rs16132263

Downloads

Published

2024-10-31

How to Cite

Abd Razak, N. N., Abbas, M. A., Kamarruzzaman, M. A. H., Purwanto, H., Mohd Hashim, N., & Mustafar, M. A. (2024). Reliability of Accuracy-Based Calibration in Quantifying Systematic Errors of Static LiDAR. Environment-Behaviour Proceedings Journal, 9(30), 127–136. https://doi.org/10.21834/e-bpj.v9i30.6235