Information Management Monitoring System for Fish Cage Farming

Authors

  • Muhammad Nor Nabihan Norzeri School of Information Science, College of Computing, Informatics and Mathematics, UiTM Selangor, Shah Alam, Malaysia
  • Saiful Farik Mat Yatin School of Information Science, College of Computing, Informatics and Mathematics, UiTM Selangor, Shah Alam, Malaysia; Institute for Big Data Analytics and Artificial Intelligence, UiTM, Shah Alam, Malaysia
  • Ahmad Zam Hariro Samsudin School of Information Science, College of Computing, Informatics and Mathematics, UiTM Selangor, Shah Alam, Malaysia; Institute for Big Data Analytics and Artificial Intelligence, UiTM, Shah Alam, Malaysia

DOI:

https://doi.org/10.21834/e-bpj.v10iSI27.6926

Abstract

This study investigates the integration of Internet of Things (IoT) technologies within an Information Management Monitoring System (IMMS) to improve water quality monitoring, operational efficiency, and decision-making in fish cage farming on the Semantan River, Temerloh. Employing mixed methods, the research targets 117 fish cage farmers, sampling 30 to 50 participants. The IoT-powered IMMS enables real-time monitoring and data-driven management, enhancing aquaculture resilience against environmental challenges. This approach supports sustainable seafood production by optimizing water quality and farm operations, contributing to the aquaculture industry’s adaptation and sustainability goals.

References

Akerkar, R. Hong, M. (2021). Big Data in Aquaculture: Opportunities and Challenges for Sogn og Fjordane Region. Norway. 9788242804341.

Bachri, A. (2024). Freshwater Monitoring System Design in Real-Time for Fish Cultivation. International Journal of Multidisciplinary Approach Research and Science. 2(1), pp:362-371. 2988-0076. Indonesia. https://doi.org//10.59653/ijmars.v2i01.483. DOI: https://doi.org/10.59653/ijmars.v2i01.483

Bachtiar, M. Hidayat, R. Anantama, R. (2022). Internet of Things (IoT) Based Aquaculture Monitoring System. MATEC Web of Conferences. (372), pp:04009. Indonesia. https://doi.org//10.1051/matecconf/202237204009. DOI: https://doi.org/10.1051/matecconf/202237204009

Benjelloun, S. El Aissi, M. Loukili, Y, Lakhrissi, Y, Ali, B. (2021). Big Data-Driven Smart Fish Farming. Proceedings of the 2nd International Conference on Big Data, Modelling and Machine Learning. pp:512-517. Scitepress. 987-989-758-559-3. Morocco. https://doi.org.//10.5220/0010738800003101. DOI: https://doi.org/10.5220/0010738800003101

Climate ADAPT. (2020). Decision Support System for Aquaculture Stakeholders in Greece in the Context of Climate Change. Horizon 2020. https://climate-adapt.eea.europa.eu/en/metadata/tools/decision-support-system-for-aquaculture-stakeholders-in-greece-in-the-context-of-climate-change. (Accessed 21 December 2024)

Creswell, J. W, & Creswell, J. D. (2018). Qualitative, Quantitative, and Mixed Methods Approaches (5th ed.). Library of Congress Cataloging-in-Publication Data. SAGE Publications. United States of America. https://lccn.log.gov/2017044644.

Dayaday, M. & Namoco, C. (2021). An Innovative Real-Time Water Quality Monitoring System for Aquaculture Application. ARPN Journal of Engineering and Applied Sciences. 24(16), pp:2737-2740. 1819-6608. The Philippines.

Eldor, I. (2023). How a Data Shortage Can Impact Your Aquaculture Yield. Bule-Unit. https://blue-unit.com/how-a-data-shortage-can-impact-your-aquaculture-yield/. (Accessed on 20 December 2024).

Endut, A. Fahmi, M. Fo’ad, M. Azylia, N. Azam, A. Ashitah, N. Othman, A. Rahayu, S. Aziz, A. Shobirin, A. Sani, A. (2019). Real-Time Water Monitoring System for Fish Farmers using Arduino. Journal of Advanced Research in Computing and Applications. 14(1), pp:10-17. 2462-1927. Malaysia.

Fakhrurroja, H. Mardhotillah, S. Mahendra, O. Pratama, R. Rizqyawan, M. Munandar, A. (2019). Automatic pH and Humidity Control System for Hydroponics Using Fuzzy Logic. 2019 International Conference on Computer, Control, Informatics and its Applications. pp:156-161. Indonesia. DOI: https://doi.org/10.1109/IC3INA48034.2019.8949590

Hemal, M. Rahman, A. Nurjahan, Islam, F. Ahmed, S. Kaiser, M. Ahmed, M. (2024). An Integrated Smart Pond Water Quality Monitoring and Fish Farming Recommendation Aquabot System. Sensors. 11(24), pp:1-22. 14248220. Bangladesh. https://doi.org/10.3390/s24113682. DOI: https://doi.org/10.3390/s24113682

Hossain, P., Amjath-Babu, T., Krupnik, T., Braun, M., Mohammed, E., Phillips, M. (2021). Developing Climate Information Services for Aquaculture in Bangladesh: A Decision Framework for Managing Temperature and Rainfall Variability-Induced Risks. Frontiers in Sustainable Food Systems. 5, pp:1-17. 2571581X. Bangladesh. https://doi.org/10.3389/fsufs.2021.677069 DOI: https://doi.org/10.3389/fsufs.2021.677069

Loh, S. The, P. Goay, G., Sim, J. (2023). Development of an IoT-Based Fish Farm Monitoring System. 13th International Conference on Control Systems, Computing and Engineering (ICCSCE). Malaysia. https://doi.org/10.1109/ICCSCEE58721.2023.10237168. DOI: https://doi.org/10.1109/ICCSCE58721.2023.10237168

Nuankaew, W. Tupaso, B. Nasa-Ngiu, P. Nuankaew, P. (2023). Internet of Things for Monitoring Fish Cage Water Quality. International Journal of Engineering Trends and Technology. 71(6), pp:212-220. 2231-5381. Thailand. https://doi.org/10.14445/22315381/IJETT-V7116P222. DOI: https://doi.org/10.14445/22315381/IJETT-V71I6P222

NexSens Technology. (2024). Cage Aquaculture Monitoring. https://www.nexsens.com/systems/cage-aquaculture-monitoring. (Accessed on 19 December 2024)

Panudju, A. Rahardja, S. Nurilmala, M. Marimin. (2023). Decision Support System in Fisheries Industry: Current State and Future Agenda. International Journal on Advanced Science, Engineering and Information Technology. 2(13), pp:599-610. 2460-6952. Indonesia. https://doi.org/10.18517/ijaseit.13.2.17914. DOI: https://doi.org/10.18517/ijaseit.13.2.17914

Ramson, S., Bhavanam, D., Draksharam, S. Kumar, R. Moni, D. Kirubaraj, A. (2018). Sensor Networks Based Water Quality Monitoring Systems for Intensive Fish Culture - A Review. 4th International Conference on Devices, Circuits and Systems (ICDCS) 2018. pp:54-57. India. DOI: https://doi.org/10.1109/ICDCSyst.2018.8605146

Zhang, Q. & Su, B. (2024). A Hybrid Approach Towards Real-Time Monitoring of Fish Distributions in Aquaculture Net Cage. SSRN. Norway. https://doi.org/10.2139/ssrn.5043094. DOI: https://doi.org/10.2139/ssrn.5043094

Downloads

Published

2025-05-15

How to Cite

Norzeri, M. N. N., Mat Yatin, S. F., & Samsudin, A. Z. H. (2025). Information Management Monitoring System for Fish Cage Farming. Environment-Behaviour Proceedings Journal, 10(SI27), 149–153. https://doi.org/10.21834/e-bpj.v10iSI27.6926