InsightVista: Unveiling visitor sentiments and trends for Terengganu state museum using text analytics

Authors

  • Nurul Husna Tarmizi College of Computing, Informatics and Mathematics, Universiti Teknologi MARA, Cawangan Terenggnu, Kampus Kuala Terengganu, Terengganu, Malaysia
  • Nur Iman Husna A’riff College of Computing, Informatics and Mathematics, Universiti Teknologi MARA, Cawangan Terenggnu, Kampus Kuala Terengganu, Terengganu, Malaysia.
  • Norulhidayah Isa College of Computing, Informatics and Mathematics, Universiti Teknologi MARA, Cawangan Terenggnu, Kampus Kuala Terengganu, Terengganu, Malaysia.
  • Sarah Yusoff College of Computing, Informatics and Mathematics, Universiti Teknologi MARA, Cawangan Terenggnu, Kampus Kuala Terengganu, Terengganu, Malaysia.
  • Nor Hasnul Azirah Abdul Hamid College of Computing, Informatics and Mathematics, Universiti Teknologi MARA, Cawangan Terenggnu, Kampus Kuala Terengganu, Terengganu, Malaysia.

DOI:

https://doi.org/10.21834/e-bpj.v10iSI31.6938

Keywords:

sentiment analysis, clustering, visitor experiences, CRISP-DM

Abstract

This project explores visitor experiences by conducting sentiment analysis and clustering analysis on 1,973 visitor reviews posted on Google Maps and TripAdvisor. Utilizing machine learning algorithms like Support Vector Machine (SVM) and the K-Means algorithm, the project achieved 87.66% accuracy in sentiment classification and identified three optimal clusters. Then, a detailed analysis of both results were conducted. The insights are visualized through an interactive dashboard, enabling museum management to make informed decisions. Despite data limitations, the project offers strategic recommendations for ongoing improvement, aiming to enhance visitor satisfaction and engagement at the Terengganu State Museum.

References

Ashfaque, Z. (2023). Sentiment Analysis with Naive Bayes Algorithm - Zubair Ashfaque - Medium. Medium. https://medium.com/@zubairashfaque/sentiment-analysis-with-naive-bayes-algorithm-a31021764fb4

Cambria, E., Schuller, B., Xia, Y., & Havasi, C. (2018). New Avenues in Knowledge Bases for Natural Language Processing. Journal of Artificial Intelligence Research, 60, 239-270. https://doi.org/10.1613/jair.5551

Falk, J. H., & Dierking, L. D. (2018). "Enhancing Visitor Engagement in Museums: The Role of Personal, Social, and Physical Contexts." Museum Management and Curatorship, 33(1), 55-70. https://doi.org/10.1080/09647775.2018.1388832

Li, X., & He, Z. (2019). "Text Analytics for Enhancing Visitor Experience in Museums: A Case Study." Journal of Cultural Heritage Management and Sustainable Development, 9(2), 167-180. https://doi.org/10.1108/JCHMSD-01-2019-0003

Liao, L., & Huang, Y. (2019). "Interactive Technologies in Museums: Enhancing Visitor Engagement Through Digital Experiences." Journal of Cultural Heritage, 36, 170-179. https://doi.org/10.1016/j.culher.2018.09.016 DOI: https://doi.org/10.1016/j.culher.2018.09.016

Liu, Y., Huang, Q., & Chen, J. (2020). "Sentiment Analysis of Online Reviews for Museums: A Study of Visitor Experiences." Journal of Hospitality and Tourism Technology, 11(3), 315-330. https://doi.org/10.1108/JHTT-11-2019-0120

Reddy, V. (2023). Sentiment Analysis using SVM - ScrapeHero - Medium. Medium. https://medium.com/scrapehero/sentiment-analysis-using-svm-338d418e3ff1

Roni, E. F., Haryani, C. A., Mitra, A. R., & Aribowo*, A. (2023). Sentiment Analysis of Crypto Coin on Twitter Data Using Text Mining Method with K-Means Clustering Case Study: Bitcoin, Ethereum, and Binance. 2023 IEEE 9th Information Technology International Seminar (ITIS). https://doi.org/10.1109/ITIS59651.2023.10420085 DOI: https://doi.org/10.1109/ITIS59651.2023.10420085

Singh, S., & Srivastava, S. (2020). Review of clustering techniques in control system: review of clustering techniques in control system. Procedia Computer Science, 173, 272-280. DOI: https://doi.org/10.1016/j.procs.2020.06.032

Smith, P., & McCartney, G. (2019). "The Impact of Staff Behavior on Visitor Satisfaction in Museums." Journal of Service Management, 30(3), 335-351. https://doi.org/10.1108/JOSM-10-2018-0334

Wati, M., Noorlah, M. S., Tejawati, A., Septiarini, A., Jamil, M., & Puspitasari, N. (2022). Implementation of The K-means Clustering for The Public Health Center Data. 2022 International Conference on Electrical Engineering, Computer and Information Technology. https://doi.org/10.1109/ICEECIT55908.2022.10030452 DOI: https://doi.org/10.1109/ICEECIT55908.2022.10030452

Xu, L., & Li, Y. (2020). "Enhancing Customer Service in Museums Through Staff Training: A Case Study Approach." Journal of Hospitality and Tourism Insights, 3(2), 155-172. https://doi.org/10.1108/JHTI-09-2019-0092

Yang, S., & Zhang, W. (2021). "Clustering Visitor Feedback Using K-Means: Insights for Cultural Institutions." Information & Management, 58(6), 103-116. https://doi.org/10.1016/j.im.2021.103116

Zhang, X., Xu, Z., Wang, X., & Lin, X. (2019). An Improved Text Clustering Method Based on Sentiment Analysis. IEEE Access, 7, 87074-87084. https://doi.org/10.1109/ACCESS.2019.2925862

Downloads

Published

2025-05-31

How to Cite

Tarmizi, N. H., A’riff, N. I. H., Isa, N., Yusoff, S., & Abdul Hamid, N. H. A. (2025). InsightVista: Unveiling visitor sentiments and trends for Terengganu state museum using text analytics . Environment-Behaviour Proceedings Journal, 10(SI31), 87–95. https://doi.org/10.21834/e-bpj.v10iSI31.6938