InsightVista: Unveiling visitor sentiments and trends for Terengganu state museum using text analytics
DOI:
https://doi.org/10.21834/e-bpj.v10iSI31.6938Keywords:
sentiment analysis, clustering, visitor experiences, CRISP-DMAbstract
This project explores visitor experiences by conducting sentiment analysis and clustering analysis on 1,973 visitor reviews posted on Google Maps and TripAdvisor. Utilizing machine learning algorithms like Support Vector Machine (SVM) and the K-Means algorithm, the project achieved 87.66% accuracy in sentiment classification and identified three optimal clusters. Then, a detailed analysis of both results were conducted. The insights are visualized through an interactive dashboard, enabling museum management to make informed decisions. Despite data limitations, the project offers strategic recommendations for ongoing improvement, aiming to enhance visitor satisfaction and engagement at the Terengganu State Museum.
References
Ashfaque, Z. (2023). Sentiment Analysis with Naive Bayes Algorithm - Zubair Ashfaque - Medium. Medium. https://medium.com/@zubairashfaque/sentiment-analysis-with-naive-bayes-algorithm-a31021764fb4
Cambria, E., Schuller, B., Xia, Y., & Havasi, C. (2018). New Avenues in Knowledge Bases for Natural Language Processing. Journal of Artificial Intelligence Research, 60, 239-270. https://doi.org/10.1613/jair.5551
Falk, J. H., & Dierking, L. D. (2018). "Enhancing Visitor Engagement in Museums: The Role of Personal, Social, and Physical Contexts." Museum Management and Curatorship, 33(1), 55-70. https://doi.org/10.1080/09647775.2018.1388832
Li, X., & He, Z. (2019). "Text Analytics for Enhancing Visitor Experience in Museums: A Case Study." Journal of Cultural Heritage Management and Sustainable Development, 9(2), 167-180. https://doi.org/10.1108/JCHMSD-01-2019-0003
Liao, L., & Huang, Y. (2019). "Interactive Technologies in Museums: Enhancing Visitor Engagement Through Digital Experiences." Journal of Cultural Heritage, 36, 170-179. https://doi.org/10.1016/j.culher.2018.09.016 DOI: https://doi.org/10.1016/j.culher.2018.09.016
Liu, Y., Huang, Q., & Chen, J. (2020). "Sentiment Analysis of Online Reviews for Museums: A Study of Visitor Experiences." Journal of Hospitality and Tourism Technology, 11(3), 315-330. https://doi.org/10.1108/JHTT-11-2019-0120
Reddy, V. (2023). Sentiment Analysis using SVM - ScrapeHero - Medium. Medium. https://medium.com/scrapehero/sentiment-analysis-using-svm-338d418e3ff1
Roni, E. F., Haryani, C. A., Mitra, A. R., & Aribowo*, A. (2023). Sentiment Analysis of Crypto Coin on Twitter Data Using Text Mining Method with K-Means Clustering Case Study: Bitcoin, Ethereum, and Binance. 2023 IEEE 9th Information Technology International Seminar (ITIS). https://doi.org/10.1109/ITIS59651.2023.10420085 DOI: https://doi.org/10.1109/ITIS59651.2023.10420085
Singh, S., & Srivastava, S. (2020). Review of clustering techniques in control system: review of clustering techniques in control system. Procedia Computer Science, 173, 272-280. DOI: https://doi.org/10.1016/j.procs.2020.06.032
Smith, P., & McCartney, G. (2019). "The Impact of Staff Behavior on Visitor Satisfaction in Museums." Journal of Service Management, 30(3), 335-351. https://doi.org/10.1108/JOSM-10-2018-0334
Wati, M., Noorlah, M. S., Tejawati, A., Septiarini, A., Jamil, M., & Puspitasari, N. (2022). Implementation of The K-means Clustering for The Public Health Center Data. 2022 International Conference on Electrical Engineering, Computer and Information Technology. https://doi.org/10.1109/ICEECIT55908.2022.10030452 DOI: https://doi.org/10.1109/ICEECIT55908.2022.10030452
Xu, L., & Li, Y. (2020). "Enhancing Customer Service in Museums Through Staff Training: A Case Study Approach." Journal of Hospitality and Tourism Insights, 3(2), 155-172. https://doi.org/10.1108/JHTI-09-2019-0092
Yang, S., & Zhang, W. (2021). "Clustering Visitor Feedback Using K-Means: Insights for Cultural Institutions." Information & Management, 58(6), 103-116. https://doi.org/10.1016/j.im.2021.103116
Zhang, X., Xu, Z., Wang, X., & Lin, X. (2019). An Improved Text Clustering Method Based on Sentiment Analysis. IEEE Access, 7, 87074-87084. https://doi.org/10.1109/ACCESS.2019.2925862
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Nurul Husna Tarmizi, Nur Iman Husna A’riff, Norulhidayah Isa, Sarah Yusoff, Nor Hasnul Azirah Abdul Hamid

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.