Deep Learning Architectures for ECG Classification in Cardiac Arrhythmia Detection: A review
DOI:
https://doi.org/10.21834/e-bpj.v10iSI32.7056Keywords:
Arrythmia detection, Deep learning models, ECG ClassificationAbstract
Cardiac arrhythmias are irregular heartbeats that may cause severe complications, including stroke and heart failure. Early detection is essential for diagnosis and treatment. This study examines deep learning models for ECG classification, evaluating CNNs, RNNs, and LSTMs. Results indicate LSTMs achieve the highest accuracy: 97.3% (PTB), 93.11% (ECG-ID), and 96.81% (MIT-BIH). Hybrid CNN-LSTM models enhance performance, particularly on imbalanced datasets. These findings demonstrate deep learning’s effectiveness, especially LSTMs, in improving ECG classification. Enhanced accuracy in arrhythmia detection can support cardiologists in diagnosing conditions more efficiently, leading to better patient outcomes and automated diagnostic advancements.
References
Ansari, Y., Mourad, O., Qaraqe, K., & Serpedin, E. (2023). Deep learning for ECG Arrhythmia detection and classification: an overview of progress for period 2017–2023. Frontiers in Physiology, 14, 1246746.
Apandi, Z. F. M., Ikeura, R., & Hayakawa, S. (2018, August). Arrhythmia detection using MIT-BIH dataset: A review. In 2018 International Conference on Computational Approach in Smart Systems Design and Applications (ICASSDA) (pp. 1-5). IEEE.
Lee, K., Mokhtar, S. A., Ismail, I., Pauzi Xiao, Q, A. L. B. M., Zhang, Q., & Lim, P. Y. (2023). Deep learning-based ECG arrhythmia classification: A systematic review. Applied Sciences, 13(8), 4964.
Liu, X., Wang, H., Li, Z., & Qin, L. (2021). Deep learning in ECG diagnosis: A review. Knowledge-Based Systems, 227, 107187.
Daydulo, Y. D., Thamineni, B. L., & Dawud, A. A. (2023). Cardiac arrhythmia detection using deep learning approach and time frequency representation of ECG signals. BMC Medical Informatics and Decision Making, 23(1), 232.
Malhotra, R., & Singh, P. (2023). Recent advances in deep learning models: a systematic literature review. Multimedia Tools and Applications, 82(29), 44977-45060.
Becerra, L., Usama, M., & Soomro, S. (2023). A novel deep learning approach for real-time critical assessment in smart urban infrastructure systems. Electronics, 13(16), 3286.
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep feedforward networks. Deep learning, (1).
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444.
Bhattacharyya, D., Dinesh Reddy, B., Kumari, N. M. J., & Rao, N. T. (2021). Comprehensive analysis on comparison of machine learning and deep learning applications on cardiac arrest
Katal, N., Gupta, S., Verma, P., & Sharma, B. (2023). Deep-Learning-Based Arrhythmia Detection Using ECG Signals A Comparative Study and Performance Evaluation. Diagnostics, 13(24), 3605
Parvaneh, S., Rubin, J., Babaeizadeh, S., & Xu-Wilson, M. (2019). Cardiac arrhythmia detection using deep learning A review. Journal of electrocardiology, 57, S70-S74
Minic, A., Jovanovic, L., Bacanin, N., Stoean, C., Zivkovic, M., Spalevic, P., ... & Stoean, R. (2023). Applying recurrent neural networks for anomaly detection in electrocardiogram sensor data. Sensors, 23(24), 9878.
Murat, F., Yildirim, O., Talo, M., Baloglu, U. B., Demir, Y., & Acharya, U. R. (2020). Application of deep learning techniques for heartbeats detection using ECG signals-analysis and review. Computers in biology and medicine, 120, 103726.
Toma, T. I., & Choi, S. (2022). A parallel cross convolutional recurrent neural network for automatic imbalanced ECG arrhythmia detection with continuous wavelet transform. Sensors, 22(19), 7396.
Jyotishi, D., & Dandapat, S. (2020). An LSTM-based model for person identification using ECG signal. IEEE Sensors Letters, 4(8), 1-4.
Avanzato, R., & Beritelli, F. (2020). Automatic ECG diagnosis using convolutional neural network. Electronics, 9(6), 951.
Ebrahimi, Z., Loni, M., Daneshtalab, M., & Gharehbaghi, A. (2020). A review on deep learning methods for ECG arrhythmia classification. Expert Systems with Applications: X, 7, 100033
Sarker, I. H. (2021). Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions. SN computer science, 2(6), 420.
Işın, Ali & Özdalili, Selen. (2017). Cardiac arrhythmia detection using deep learning. Procedia Computer Science. 120. 268-275. 10.1016/j.procs.2017.11.238.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Nur Amelia Natasha Abdul Rofar, Ziti Fariha Mohd Apandi, Nur Sukinah Aziz, Wan Roslina Wan Othman

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.