Deep Learning Architectures for ECG Classification in Cardiac Arrhythmia Detection: A review

Authors

  • Nur Amelia Natasha Abdul Rofar Department of Computer Science, Faculty of Computer, Media and Technology Management, University College TATI, 24000 Kemaman, Terengganu, Malaysia
  • Ziti Fariha Mohd Apandi Faculty of Computing, Universiti Malaysia Pahang, Al-Sultan Abdullah, 26600 Pekan, Pahang, Malaysia; Terengganu Big Data Institute, University College TATI, 24000 Kemaman, Terengganu, Malaysia.
  • Nur Sukinah Aziz Department of Computer Science, Faculty of Computer, Media and Technology Management, University College TATI, 24000 Kemaman, Terengganu, Malaysia
  • Wan Roslina Wan Othman Department of Computer Science, Faculty of Computer, Media and Technology Management, University College TATI, 24000 Kemaman, Terengganu, Malaysia

DOI:

https://doi.org/10.21834/e-bpj.v10iSI32.7056

Keywords:

Arrythmia detection, Deep learning models, ECG Classification

Abstract

Cardiac arrhythmias are irregular heartbeats that may cause severe complications, including stroke and heart failure. Early detection is essential for diagnosis and treatment. This study examines deep learning models for ECG classification, evaluating CNNs, RNNs, and LSTMs. Results indicate LSTMs achieve the highest accuracy: 97.3% (PTB), 93.11% (ECG-ID), and 96.81% (MIT-BIH). Hybrid CNN-LSTM models enhance performance, particularly on imbalanced datasets. These findings demonstrate deep learning’s effectiveness, especially LSTMs, in improving ECG classification. Enhanced accuracy in arrhythmia detection can support cardiologists in diagnosing conditions more efficiently, leading to better patient outcomes and automated diagnostic advancements.

References

Ansari, Y., Mourad, O., Qaraqe, K., & Serpedin, E. (2023). Deep learning for ECG Arrhythmia detection and classification: an overview of progress for period 2017–2023. Frontiers in Physiology, 14, 1246746.

Apandi, Z. F. M., Ikeura, R., & Hayakawa, S. (2018, August). Arrhythmia detection using MIT-BIH dataset: A review. In 2018 International Conference on Computational Approach in Smart Systems Design and Applications (ICASSDA) (pp. 1-5). IEEE.

Lee, K., Mokhtar, S. A., Ismail, I., Pauzi Xiao, Q, A. L. B. M., Zhang, Q., & Lim, P. Y. (2023). Deep learning-based ECG arrhythmia classification: A systematic review. Applied Sciences, 13(8), 4964.

Liu, X., Wang, H., Li, Z., & Qin, L. (2021). Deep learning in ECG diagnosis: A review. Knowledge-Based Systems, 227, 107187.

Daydulo, Y. D., Thamineni, B. L., & Dawud, A. A. (2023). Cardiac arrhythmia detection using deep learning approach and time frequency representation of ECG signals. BMC Medical Informatics and Decision Making, 23(1), 232.

Malhotra, R., & Singh, P. (2023). Recent advances in deep learning models: a systematic literature review. Multimedia Tools and Applications, 82(29), 44977-45060.

Becerra, L., Usama, M., & Soomro, S. (2023). A novel deep learning approach for real-time critical assessment in smart urban infrastructure systems. Electronics, 13(16), 3286.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep feedforward networks. Deep learning, (1).

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444.

Bhattacharyya, D., Dinesh Reddy, B., Kumari, N. M. J., & Rao, N. T. (2021). Comprehensive analysis on comparison of machine learning and deep learning applications on cardiac arrest

Katal, N., Gupta, S., Verma, P., & Sharma, B. (2023). Deep-Learning-Based Arrhythmia Detection Using ECG Signals A Comparative Study and Performance Evaluation. Diagnostics, 13(24), 3605

Parvaneh, S., Rubin, J., Babaeizadeh, S., & Xu-Wilson, M. (2019). Cardiac arrhythmia detection using deep learning A review. Journal of electrocardiology, 57, S70-S74

Minic, A., Jovanovic, L., Bacanin, N., Stoean, C., Zivkovic, M., Spalevic, P., ... & Stoean, R. (2023). Applying recurrent neural networks for anomaly detection in electrocardiogram sensor data. Sensors, 23(24), 9878.

Murat, F., Yildirim, O., Talo, M., Baloglu, U. B., Demir, Y., & Acharya, U. R. (2020). Application of deep learning techniques for heartbeats detection using ECG signals-analysis and review. Computers in biology and medicine, 120, 103726.

Toma, T. I., & Choi, S. (2022). A parallel cross convolutional recurrent neural network for automatic imbalanced ECG arrhythmia detection with continuous wavelet transform. Sensors, 22(19), 7396.

Jyotishi, D., & Dandapat, S. (2020). An LSTM-based model for person identification using ECG signal. IEEE Sensors Letters, 4(8), 1-4.

Avanzato, R., & Beritelli, F. (2020). Automatic ECG diagnosis using convolutional neural network. Electronics, 9(6), 951.

Ebrahimi, Z., Loni, M., Daneshtalab, M., & Gharehbaghi, A. (2020). A review on deep learning methods for ECG arrhythmia classification. Expert Systems with Applications: X, 7, 100033

Sarker, I. H. (2021). Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions. SN computer science, 2(6), 420.

Işın, Ali & Özdalili, Selen. (2017). Cardiac arrhythmia detection using deep learning. Procedia Computer Science. 120. 268-275. 10.1016/j.procs.2017.11.238.

Downloads

Published

2025-06-10

How to Cite

Abdul Rofar, N. A. N., Mohd Apandi, Z. F., Aziz, N. S., & Wan Othman, W. R. (2025). Deep Learning Architectures for ECG Classification in Cardiac Arrhythmia Detection: A review. Environment-Behaviour Proceedings Journal, 10(SI32), 83–90. https://doi.org/10.21834/e-bpj.v10iSI32.7056