Comparison of Structuring Elements for Benign and Malignant Classification in Breast Cancer

Authors

  • Norazlin Mohd Noor Centre of Mathematical Sciences, Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Nurul Fateha Zainal Centre of Mathematical Sciences, Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Siti Salmah Yasiran Centre of Mathematical Sciences, Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

Keywords:

Mammogram, segmentation, breast cancer, structuring element

Abstract

A Computer-Aided Diagnosis (CADx) system is a diagnostic tool radiologists use to reduce errors in breast cancer detection. Structuring elements in mathematical morphology could enhance the quality of the images of breast cancer.  It is challenging to find a suitable type of structuring element with an optimal radius.  Hence, this study classifies benign and malignant tumours while utilising square and diamond structuring elements. Mean square error (MSE) evaluates the quality of images that are obtained from noise between the original and segmented images.  The results show that the highest accuracy for structuring elements is for square and diamond values, at 89% and 89.2%, respectively. 

References

Abudawood, T., Al-Qunaieer, F. S., & Alrshoud, S. R. (2018). An Efficient Abnormality Classification for Mammogram Images. 21st Saudi Computer Society National Computer Conference (NCC), Riyadh, Saudi Arabia, 1–6. https://doi.org/10.1109/ncg.2018.8593208

Anitha, J., Dinesh Peter, J., & Immanuel Alex Pandian, S. (2017). A dual-stage adaptive thresholding (DuSAT) for automatic mass detection in mammograms. Computer Methods and Programs in Biomedicine, 138, 93–104. https://doi.org/10.1016/j.cmpb.2016.10.026

Aouad, T., & Talbot, H. (2022). Binary Morphological Neural Network. In 2022 IEEE International Conference on Image Processing (ICIP). https://doi.org/10.1109/icip46576.2022.9897474

Blyss Splane, & Lisa Fayed. (2023, May 23). Malignant vs. Benign Tumours: What Are the Differences? Verywellhealth.

Embong, R., & Anuar, S. R. (2019). Structuring Elements in the Watershed Algorithm for the Segmentation of Mammography Images. IEEE Region 10 Annual International Conference, Proceedings/TENCON, 2018-October. https://doi.org/10.1109/TENCON.2018.8650121

Firdaus, Q., Sigit, R., Harsono, T., & Anwar, A. (2020). Lung cancer detection based on ct-scan images with detection features using gray level co-occurrence matrix (glcm) and support vector machine (svm) methods. IES 2020 - International Electronics Symposium: The Role of Autonomous and Intelligent Systems for Human Life and Comfort, 643–648. https://doi.org/10.1109/IES50839.2020.9231663

Forman, G., & Cohen, I. S. (2004). Learning from Little: Comparison of Classifiers Given Little Training. In Lecture Notes in Computer Science (pp. 161–172). https://doi.org/10.1007/978-3-540-30116-5_17

Gholamy, A., Kreinovich, V., & Kosheleva, O. (2018). Why 70/30 or 80/20 Relation Between Training and Testing Sets : A Pedagogical Explanation. Departmental Technical Reports (CS), 1–6.

Justaniah, E., Alhothali, A., & Aldabbagh, G. (2021). Mammogram Segmentation Techniques: A Review. International Journal of Advanced Computer Science and Applications, 12(5), 520–529. https://doi.org/10.14569/IJACSA.2021.0120564

K.M, Prabusankarlal., P, Thirumoorthy., & R, Manavalan. (2014). Combining Clustering, Morphology and Metaheuristic Optimisation Technique for Segmentation of Breast Ultrasound Images to Detect Tumours. International Journal of Computer Applications, 86(14). https://doi.org/10.5120/15055-3465

Kang, S. Y., Kim, Y. S., Kim, Z., Kim, H. Y., Kim, H. J., Park, S., Bae, S. Y., Yoon, K. H., Lee, S. B., Lee, S. K., Jung, K. W., Han, J., & Youn, H. J. (2020). Breast cancer statistics in Korea in 2017: Data from a breast cancer registry. Journal of Breast Cancer, 23(2). https://doi.org/10.4048/jbc.2020.23.e24

Kisačanin, B., & Schonfeld, D. (1994). A fast thresholded linear convolution representation of morphological operations. IEEE Transactions on Image Processing, 3(4), 455–457. https://doi.org/10.1109/83.298399

Kumar, S., Adarsh, A., Kumar, B., & Singh, A. K. (2020). An automated early diabetic retinopathy detection through improved blood vessel and optic disc segmentation. Optics and Laser Technology, 121. https://doi.org/10.1016/j.optlastec.2019.105815

Lee, M. S., Azmiyaty Amar Ma’Ruf, C., Izhar, D. P. N., Ishak, S. N., Jamaluddin, W. S. W., Ya’Acob, S. N. M., & Kamaluddin, M. N. (2019). Awareness on breast cancer screening in Malaysia: A cross sectional study. BioMedicine (France), 9(3). https://doi.org/10.1051/bmdcn/2019090318

Lim, T. S., Tay, K. G., Huong, A., & Lim, X. Y. (2021). Breast cancer diagnosis system using hybrid support vector machine-artificial neural network. International Journal of Electrical and Computer Engineering, 11(4), 3059–3069. https://doi.org/10.11591/ijece.v11i4.pp3059-3069

Liu, Y., Zhang, H., Guo, H., & Xiong, N. N. (2018). A FAST-BRISK feature detector with depth information. Sensors (Switzerland), 18(11). https://doi.org/10.3390/s18113908

Nida, N., Irtaza, A., Javed, A., Yousaf, M. H., & Mahmood, M. T. (2019). Melanoma lesion detection and segmentation using deep region based convolutional neural network and fuzzy C-means clustering. International Journal of Medical Informatics, 124(January), 37–48. https://doi.org/10.1016/j.ijmedinf.2019.01.005

Patil, V., Burud, S., Pawar, G., Rayajadhav, T., & Hebbale, S. B. (2020). Breast cancer detection using MATLAB functions. Advancement in Image Processing and Pattern Recognition, 11–16.

Paul, A., Sutradhar, T., Bhattacharya, P., & Maity, S. P. (2021). Infrared images enhancement using fuzzy dissimilarity histogram equalisation. Optik, 247. https://doi.org/10.1016/j.ijleo.2021.167887

Primkhajeepong, C., Phukpattaranont, P., Limsiroratana, S., Boonyaphiphat, P., & Kayasut, K. (2010). Performance evaluation of automated algorithm for breast cancer cell counting. International Journal of Computer and Electrical Engineering. https://doi.org/10.7763/ijcee.2010.v2.204

Salama, M. S., Eltrass, A. S., & Elkamchouchi, H. M. (2018). An Improved Approach for Computer-Aided Diagnosis of Breast Cancer in Digital Mammography. MeMeA 2018 - 2018 IEEE International Symposium on Medical Measurements and Applications, Proceedings. https://doi.org/10.1109/MeMeA.2018.8438650

Suckling, J., Parker, J. W., Astley, S., Hutt, I. W., Boggis, C., Ricketts, I. W., Stamatakis, E., Cerneaz, N., Kok, S. L., Taylor, P. C., Betal, D., & Savage, J. (1994). The Mammographic Image Analysis Society digital mammogram database. Exerpta Medica. International Congress Series 1069, 375–378. http://discovery.ucl.ac.uk/102193/

Tareen, S. A. K., & Saleem, Z. (2018). A comparative analysis of SIFT, SURF, KAZE, AKAZE, ORB, and BRISK. 2018 International Conference on Computing, Mathematics and Engineering Technologies: Invent, Innovate and Integrate for Socioeconomic Development, ICoMET 2018 - Proceedings, 2018-January. https://doi.org/10.1109/ICOMET.2018.8346440

Yasiran, S. S, Salleh, & S., & M. R. (2020). Standard Deviation Based Otsu for Breast Cancer Classification. ASM Sci. J. ASM Sci. J.

Published

2026-01-27

How to Cite

Mohd Noor, N., Zainal, N. F., & Yasiran, S. S. (2026). Comparison of Structuring Elements for Benign and Malignant Classification in Breast Cancer . Environment-Behaviour Proceedings Journal, 10(SI40). Retrieved from https://ebpj.e-iph.co.uk/index.php/EBProceedings/article/view/7710