Android Malware Detection using Deep Learning Classification Approach

Authors

  • Mohd Faris Mohd Fuzi Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, Perlis Branch, Arau Campus, 02600 Arau, Perlis, Malaysia
  • Nur Amirah Amri Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, Perlis Branch, Arau Campus, 02600 Arau, Perlis, Malaysia
  • Mohammad Hafiz Ismail Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, Perlis Branch, Arau Campus, 02600 Arau, Perlis, Malaysia
  • Mohamad Yusof Darus Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Tajul Rosli Razak Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Nurul Huda Nik Zulkipli Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, Melaka Branch, Jasin Campus, 77300 Merlimau, Melaka, Malaysia

Keywords:

Android Malware, Malware Detection, Deep Learning

Abstract

Android devices are becoming increasingly popular, and there are more threats to Android users. This paper discusses Android malware detection using a deep learning classification approach. In this study, Android software was analysed using malware analysis tools, the selected features were extracted, and the results were compiled into a CSV file. Then, its use in CNN and RNN models for malware detection was analysed by measuring accuracy using the standard accuracy formula. According to the development process, CNN performs better at detecting Android malware, achieving 96 per cent accuracy, while RNN achieves 75 per cent accuracy.

References

Arora, A., Peddoju, S.K., Chouhan, V., & Chaudhary, A. (2019). Hybrid Android malware detection by combining supervised and unsupervised learning. 24th Annual International Conference on Mobile Computing and Networking (MobiCom '18). Association for Computing Machinery. pp. 798–800. https://doi.org/10.1145/3241539.3267768.

Assegie, T.A. (2021). An Optimised KNN Model for Signature-Based Malware Detection. International Journal of Computer Engineering in Research Trends (IJCERT). Vol. 8, Issue 02, pp. 46-49, https://ijcert.org/ems/ijcert_papers/V8I206.pdf.

Baldini, G., and Geneiatakis, D. (2019). A Performance Evaluation on Distance Measures in KNN for Mobile Malware Detection. 6th International Conference on Control, Decision, and Information Technologies (CoDIT). pp. 193-198. https://doi.org/10.1109/CoDIT.2019.8820510.

Castillo-Zúñiga, I.; Luna-Rosas, F.; Rodríguez-Martínez, L.; Muñoz-Arteaga, J.; López-Veyna, J.; Rodríguez-Díaz, M.A. (2020). Internet Data Analysis Methodology for Cyberterrorism Vocabulary Detection, Combining Techniques of Big Data Analytics, NLP, and Semantic Web. International Journal on Semantic Web and Information Systems (IJSWIS). 16(1). 69–86. DOI: 10.4018/IJSWIS.2020010104.

Chia, C., Choo, K.-K.R. & Fehrenbacher, D. (2017). How Cyber-Savvy are Older Mobile Device Users? Mobile Security and Privacy. Advances, Challenges, and Future Research Directions. Pages 67-83. https://doi.org/10.1016/B978-0-12-804629-6.00004-3.

Droos, A., Al-Mahadeen, A., Al-Harasis, T., Al-Attar, R. & Ababneh, M. (2022). Android Malware Detection Using Machine Learning. 13th International Conference on Information and Communication Systems (ICICS). pp. 36–41.

Fedler, R., Kulicke, M., & Schutte, J. (2013). An Antivirus API for Android Malware Recognition. 2013 8th International Conference on Malicious and Unwanted Software:”The Americas” (MALWARE). 77–84. https://doi.org/10.1109/MALWARE.2013.6703688.

Ghosh, A., & Senthilrajan, A. (2019). Research on Packet Inspection Techniques. International Journal of Scientific & Technology Research. 8. 2068-2073.

Hyoil, H., Lim, S., Suh, K., Park, S., Cho, S. & Park, M. (2020). Enhanced Android Malware Detection: An SVM-Based Machine Learning Approach. IEEE International Conference on Big Data and Smart Computing (BigComp). 75-81. http://dx.doi.org/10.1109/BigComp48618.2020.00-96.

Jay, A. (2023). Number of Smartphone and Mobile Phone Users Worldwide in 2020/2021: Demographics, Statistics, Predictions. FinancesOnline. https://financesonline.com/number-of-smartphone-users-worldwide. Accessed: 2023-Jan-11.

Mat, S.R.T., Ab Razak, M.F., Kahar, M.N.M., Arif, J.M., Mohamad, S. & Firdaus, A. (2021). Towards a Systematic Description of the Field Using Bibliometric Analysis:Malware Evolution. Scientometrics, 126, 2013–2055 https://doi.org/10.1007/s11192-020-03834-6.

Mbaziira, A.V., Diaz-Gonzales, J. & Liu, M. (2020). Deep Learning in Detection of Mobile Malware. Journal of Computing Sciences in Colleges, vol. 36, no. 3, pp. 80–88.

McLaughlin, N., Martinez Del Rincon, J., Kang, B., Yerima, S., Miller, P., Sezer, S., Safaei, Y., Trickel, E., Zhao, Z., Doupé, A., & Joon Ahn, G. (2017). Deep Android Malware Detection. Proceedings of the Seventh ACM Conference on Data and Application Security and Privacy. https://doi.org/10.1145/3029806.3029823.

Nicheporuk, A., Savenko, O., Nicheporuk, A., & Nicheporuk, Y. (2020). An Android Malware Detection Method Based on CNN Mixed-data Model. EasyChair Preprint no. 4345. https://easychair.org/publications/preprint/cpxr.

Qiu, J., Zhang, J., Luo, W., Pan, L., Nepal, S., & Xiang, Y. (2021). A Survey of Android Malware Detection with Deep Neural Models. ACM Computing Surveys, 53(6), 1–36. https://doi.org/10.1145/3417978.

Shiqi, L. (2019). Android Malware Analysis and Detection Based on Attention-CNN-LSTM. Journal of Computers, 31–43. https://doi.org/10.17706/jcp.14.1.31-43.

Singh, P., Borgohain, S. K. & Kumar, J. (2022). Performance Enhancement of SVM-based ML Malware Detection Model Using Data Preprocessing. 2nd International Conference on Emerging Frontiers in Electrical and Electronic Technologies (ICEFEET). pp. 1–4, doi: 10.1109/ICEFEET51821.2022.9848192.

Statcounter Global Stats. (2023). Mobile Operating System Market Share Worldwide 2020. Statcounter Global Stats. https://gs.statcounter.com/os-market-share/mobile/worldwide. Accessed: 2023-Jan-11.

Tayyab, U., Khan, F. B., Durad, M. H., Khan, A., & Lee, Y. S. (2022). A Survey of the Recent Trends in Deep Learning Based Malware Detection. Journal of Cybersecurity and Privacy. 2. 800–829. 10.3390/jcp2040041.

Viennot, N., Garcia, E. & Nieh, J. (2014). A Measurement Study of Google Play. 2014 ACM International Conference on Measurement and Modelling of Computer Systems (SIGMETRICS '14). 221–233. https://doi.org/10.1145/2591971.2592003.

Wang, Z., Li, G., Chi, Y., Zhang, J., Yang, T., & Liu, Q. (2019). Android Malware Detection Based on Convolutional Neural Networks. 3rd International Conference on Computer Science and Application Engineering - CSAE 2019. https://doi.org/10.1145/3331453.3361306.

Wu, S. (2017). Detecting Remote Access Trojans through External Control at Area Network Borders. ACM/IEEE Symposium on Architectures for Networking and Communications. 10.1109/ANCS.2017.27.

Yildiz, O. & Dogru, I.A. (2019). Permission-based Android Malware Detection System using Feature Selection with Genetic Algorithm. International Journal of Software Engineering and Knowledge Engineering, Vol. 29, No. 02, pp. 245-262. https://doi.org/10.1142/S0218194019500116.

Yilmaz, A. B., Taspinar, Y. S., & Koklu, M. (2022). Classification of Malicious Android Applications Using Naive Bayes and Support Vector Machine Algorithms. International Journal of Intelligent Systems and Applications in Engineering, 10(2), 269–274. Retrieved from https://www.ijisae.org/index.php/IJISAE/article/view/2010.

Published

2026-01-27

How to Cite

Mohd Fuzi, M. F., Amri, N. A., Ismail, M. H., Darus, M. Y., Razak, T. R., & Nik Zulkipli, N. H. (2026). Android Malware Detection using Deep Learning Classification Approach . Environment-Behaviour Proceedings Journal, 10(SI40). Retrieved from https://ebpj.e-iph.co.uk/index.php/EBProceedings/article/view/7714