Visualizing Atherosclerotic Burden in ApoE-/- Mice Treated with Multiple Doses of Celastrol via ORO en face Staining

Authors

  • Nurin Yasmin Mohd Khairudin 1 Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA, Malaysia; Laboratory Animal Care Unit, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia
  • Suhaila Abd Muid Department of Biochemistry, Faculty of Medicine, Universiti Teknologi MARA, Malaysia
  • Ilham Chenu Department of Teacher Profession Program, Faculty of Education, Fatoni University, Thailand
  • Nasibah Azme Laboratory Animal Care Unit, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia; Department of Physiology, Faculty of Medicine, Universiti Teknologi MARA, Malaysia

DOI:

https://doi.org/10.21834/e-bpj.v10iSI35.7514

Keywords:

atherosclerosis, celastrol, lipid, Oil Red O

Abstract

Atherosclerosis is an inflammatory disease marked by lipid accumulation in large arteries, leading to cardiovascular disease and stroke. The ApoE⁻/⁻ mouse is widely used to study plaque development and test interventions. This study aimed to assess the anti-atherosclerotic effect of celastrol using standardized Oil Red O (ORO) en face staining. ApoE⁻/⁻ mice (n=24) on a high-fat diet were treated with varying doses of celastrol. ORO en face staining revealed significant plaque reduction in celastrol-treated groups. These findings suggest that celastrol may attenuate plaque development and warrant further mechanistic research to support its clinical translation in atherosclerosis treatment.

References

Aziz, M., & Yadav, K. (2022). Pathogenesis of Atherosclerosis: Review. Journal of Pharmaceutical Research International, 54–62.

Cascão, R., Fonseca, J. E., & Moita, L. F. (2017). Celastrol: A Spectrum of Treatment Opportunities in Chronic Diseases. Frontiers in medicine, 4, 69.

Čejková, S., Králová-Lesná, I., & Poledne, R. (2016). Monocyte adhesion to the endothelium is an initial stage of atherosclerosis development. Current Vascular

Pharmacology, 14(1), 18–28.

Chen, P. Y., Qin, L., & Simons, M. (2022). Imaging and Analysis of Oil Red O-Stained Whole Aorta Lesions in an Aneurysm Hyperlipidemia Mouse Model. Journal of

visualized experiments : JoVE, (183), 10.3791/61277. https://doi.org/10.3791/61277

Cheng, J., Tian, Z., Li, J., & Hu, H. (2021). Celastrol attenuates atherosclerosis in Apolipoprotein E (apoE) knockout mice fed an atherogenic diet. International Scholars

Journals, Article ID 55319.

Cheng, H., Zhong, W., Wang, L., Zhang, Q., Ma, X., Wang, Y., Wang, S., He, C., Wei, Q., & Fu, C. (2022). Effects of shear stress on vascular endothelial functions in

atherosclerosis and potential therapeutic approaches. Biomedicine & Pharmacotherapy, 153, Article 114198.

Cunningham, K. S., & Gotlieb, A. I. (2005). The role of shear stress in the pathogenesis of atherosclerosis. Laboratory Investigation, 85(1), 9–23.

Dong, Y., Gao, W., Hong, S., Song, D., Liu, M., Du, Y., Xu, J., & Dong, F. (2024). Evaluation of turbulence index and flow pattern for atherosclerotic carotid stenosis: A

high-frame-rate vector flow imaging study. Ultrasound in Medicine & Biology, 50(4), 549–556.

Feng, T., Liu, P., Wang, X., Luo, J., Zuo, X., Jiang, X., Liu, C., Li, Y., Li, N., Chen, M., Zhu, N., Han, X., Liu, C., Xu, Y., & Si, S. (2018). SIRT1 activator E1231 protects

from experimental atherosclerosis and lowers plasma cholesterol and triglycerides by enhancing ABCA1 expression. Atherosclerosis, 274, 172–181.

Fenyo, I. M., & Gafencu, A. V. (2013). The involvement of the monocytes/macrophages in chronic inflammation associated with atherosclerosis. Immunobiology,

(11), 1376–1384.

Gu, L., Bai, W., Li, S., Zhang, Y., Han, Y., Gu, Y., Meng, G., Xie, L., Wang, J., Xiao, Y., Shan, L., Zhou, S., Wei, L., Ferro, A., & Ji, Y. (2013). Celastrol prevents

atherosclerosis via inhibiting LOX-1 and oxidative stress. PloS One, 8(6), e65477.

Gusev, E., & Sarapultsev, A. (2023). Atherosclerosis and Inflammation: Insights from the Theory of General Pathological Processes. International journal of molecular

sciences, 24(9), 7910. https://doi.org/10.3390/ijms24097910

Hansson, G. K., & Hermansson, A. (2011). The immune system in atherosclerosis. Nature immunology, 12(3), 204–212.

Kumar, S., Chen, M., Li, Y., Wong, F. H. S., Thiam, C. W., Hossain, M. Z., Poh, K. K., Hirohata, S., Ogawa, H., Angeli, V., & Ge, R. (2016). Loss of ADAMTS4 reduces

high-fat diet-induced atherosclerosis and enhances plaque stability in ApoE(-/-) mice. Scientific Reports, 6, 31130.

Li, Z., Zhang, J., Duan, X., Zhao, G., & Zhang, M. (2022). Celastrol: A Promising Agent Fighting against Cardiovascular Diseases. Antioxidants, 11(8), 1597.

https://doi.org/10.3390/antiox11081597

Libby, P. (2021). The changing landscape of atherosclerosis. Nature, 592, 524–533.

Luo, Y., Duan, H., Qian, Y., Feng, L., Wu, Z., Wang, F., Feng, J., Yang, D., Qin, Z., & Yan, X. (2017).Macrophagic CD146 promotes foam cell formation and retention

during atherosclerosis. Cell Research, 27(3), 352–372.

Moore, K., Sheedy, F., & Fisher, E. (2013). Macrophages in atherosclerosis: A dynamic balance. Nature Reviews Immunology, 13(10), 709–721.

Sijbesma, J. W. A., van Waarde, A., Kristensen, S., Kion, I., Tietge, U. J. F., Hillebrands, J.-L., Bulthuis, M. L. C., Buikema, H., Nakladal, D., Westerterp, M., Liu, F.,

Boersma, H. H., Dierckx, R. A. J. O., & Slart, R. H. J. A. (2023). Characterization of a novel model for atherosclerosis imaging: the apolipoprotein E-deficient

rat. EJNMMI Research, 13(1). https://doi.org/10.1186/s13550-023-01055-5

Sun, Y., Wang, C., Li, X., Lu, J., & Wang, M. (2024). Recent advances in drug delivery of celastrol for enhancing efficiency and reducing the toxicity. Frontiers in

Pharmacology, 15, Article 1137289.

Zhang, Y., Fatima, M., Hou, S., Bai, L., Zhao, S., & Liu, E. (2021). Research methods for animal models of atherosclerosis (Review). Molecular medicine reports, 24(6),

Zhao, X., Huang, B., Zhang, J. et al. (2023). Celastrol attenuates streptozotocin-induced diabetic cardiomyopathy in mice by inhibiting the ACE / Ang II / AGTR1

signaling pathway. Diabetol Metab Syndr 15, 186.

Published

2025-11-30

How to Cite

Mohd Khairudin, N. Y., Abd Muid, S., Chenu, I., & Azme, N. (2025). Visualizing Atherosclerotic Burden in ApoE-/- Mice Treated with Multiple Doses of Celastrol via ORO en face Staining. Environment-Behaviour Proceedings Journal, 10(SI35). https://doi.org/10.21834/e-bpj.v10iSI35.7514