Visualizing Atherosclerotic Burden in ApoE-/- Mice Treated with Multiple Doses of Celastrol via ORO en face Staining
DOI:
https://doi.org/10.21834/e-bpj.v10iSI35.7514Keywords:
atherosclerosis, celastrol, lipid, Oil Red OAbstract
Atherosclerosis is an inflammatory disease marked by lipid accumulation in large arteries, leading to cardiovascular disease and stroke. The ApoE⁻/⁻ mouse is widely used to study plaque development and test interventions. This study aimed to assess the anti-atherosclerotic effect of celastrol using standardized Oil Red O (ORO) en face staining. ApoE⁻/⁻ mice (n=24) on a high-fat diet were treated with varying doses of celastrol. ORO en face staining revealed significant plaque reduction in celastrol-treated groups. These findings suggest that celastrol may attenuate plaque development and warrant further mechanistic research to support its clinical translation in atherosclerosis treatment.
References
Aziz, M., & Yadav, K. (2022). Pathogenesis of Atherosclerosis: Review. Journal of Pharmaceutical Research International, 54–62.
Cascão, R., Fonseca, J. E., & Moita, L. F. (2017). Celastrol: A Spectrum of Treatment Opportunities in Chronic Diseases. Frontiers in medicine, 4, 69.
Čejková, S., Králová-Lesná, I., & Poledne, R. (2016). Monocyte adhesion to the endothelium is an initial stage of atherosclerosis development. Current Vascular
Pharmacology, 14(1), 18–28.
Chen, P. Y., Qin, L., & Simons, M. (2022). Imaging and Analysis of Oil Red O-Stained Whole Aorta Lesions in an Aneurysm Hyperlipidemia Mouse Model. Journal of
visualized experiments : JoVE, (183), 10.3791/61277. https://doi.org/10.3791/61277
Cheng, J., Tian, Z., Li, J., & Hu, H. (2021). Celastrol attenuates atherosclerosis in Apolipoprotein E (apoE) knockout mice fed an atherogenic diet. International Scholars
Journals, Article ID 55319.
Cheng, H., Zhong, W., Wang, L., Zhang, Q., Ma, X., Wang, Y., Wang, S., He, C., Wei, Q., & Fu, C. (2022). Effects of shear stress on vascular endothelial functions in
atherosclerosis and potential therapeutic approaches. Biomedicine & Pharmacotherapy, 153, Article 114198.
Cunningham, K. S., & Gotlieb, A. I. (2005). The role of shear stress in the pathogenesis of atherosclerosis. Laboratory Investigation, 85(1), 9–23.
Dong, Y., Gao, W., Hong, S., Song, D., Liu, M., Du, Y., Xu, J., & Dong, F. (2024). Evaluation of turbulence index and flow pattern for atherosclerotic carotid stenosis: A
high-frame-rate vector flow imaging study. Ultrasound in Medicine & Biology, 50(4), 549–556.
Feng, T., Liu, P., Wang, X., Luo, J., Zuo, X., Jiang, X., Liu, C., Li, Y., Li, N., Chen, M., Zhu, N., Han, X., Liu, C., Xu, Y., & Si, S. (2018). SIRT1 activator E1231 protects
from experimental atherosclerosis and lowers plasma cholesterol and triglycerides by enhancing ABCA1 expression. Atherosclerosis, 274, 172–181.
Fenyo, I. M., & Gafencu, A. V. (2013). The involvement of the monocytes/macrophages in chronic inflammation associated with atherosclerosis. Immunobiology,
(11), 1376–1384.
Gu, L., Bai, W., Li, S., Zhang, Y., Han, Y., Gu, Y., Meng, G., Xie, L., Wang, J., Xiao, Y., Shan, L., Zhou, S., Wei, L., Ferro, A., & Ji, Y. (2013). Celastrol prevents
atherosclerosis via inhibiting LOX-1 and oxidative stress. PloS One, 8(6), e65477.
Gusev, E., & Sarapultsev, A. (2023). Atherosclerosis and Inflammation: Insights from the Theory of General Pathological Processes. International journal of molecular
sciences, 24(9), 7910. https://doi.org/10.3390/ijms24097910
Hansson, G. K., & Hermansson, A. (2011). The immune system in atherosclerosis. Nature immunology, 12(3), 204–212.
Kumar, S., Chen, M., Li, Y., Wong, F. H. S., Thiam, C. W., Hossain, M. Z., Poh, K. K., Hirohata, S., Ogawa, H., Angeli, V., & Ge, R. (2016). Loss of ADAMTS4 reduces
high-fat diet-induced atherosclerosis and enhances plaque stability in ApoE(-/-) mice. Scientific Reports, 6, 31130.
Li, Z., Zhang, J., Duan, X., Zhao, G., & Zhang, M. (2022). Celastrol: A Promising Agent Fighting against Cardiovascular Diseases. Antioxidants, 11(8), 1597.
https://doi.org/10.3390/antiox11081597
Libby, P. (2021). The changing landscape of atherosclerosis. Nature, 592, 524–533.
Luo, Y., Duan, H., Qian, Y., Feng, L., Wu, Z., Wang, F., Feng, J., Yang, D., Qin, Z., & Yan, X. (2017).Macrophagic CD146 promotes foam cell formation and retention
during atherosclerosis. Cell Research, 27(3), 352–372.
Moore, K., Sheedy, F., & Fisher, E. (2013). Macrophages in atherosclerosis: A dynamic balance. Nature Reviews Immunology, 13(10), 709–721.
Sijbesma, J. W. A., van Waarde, A., Kristensen, S., Kion, I., Tietge, U. J. F., Hillebrands, J.-L., Bulthuis, M. L. C., Buikema, H., Nakladal, D., Westerterp, M., Liu, F.,
Boersma, H. H., Dierckx, R. A. J. O., & Slart, R. H. J. A. (2023). Characterization of a novel model for atherosclerosis imaging: the apolipoprotein E-deficient
rat. EJNMMI Research, 13(1). https://doi.org/10.1186/s13550-023-01055-5
Sun, Y., Wang, C., Li, X., Lu, J., & Wang, M. (2024). Recent advances in drug delivery of celastrol for enhancing efficiency and reducing the toxicity. Frontiers in
Pharmacology, 15, Article 1137289.
Zhang, Y., Fatima, M., Hou, S., Bai, L., Zhao, S., & Liu, E. (2021). Research methods for animal models of atherosclerosis (Review). Molecular medicine reports, 24(6),
Zhao, X., Huang, B., Zhang, J. et al. (2023). Celastrol attenuates streptozotocin-induced diabetic cardiomyopathy in mice by inhibiting the ACE / Ang II / AGTR1
signaling pathway. Diabetol Metab Syndr 15, 186.
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Nurin Yasmin Mohd Khairudin, Suhaila Abd Muid, Ilham Chenu, Nasibah Azme

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.