Reduced Monocular Accommodation Abilities with Laptop Usage Under Scotopic Ambient Illumination
DOI:
https://doi.org/10.21834/e-bpj.v9i30.6215Keywords:
Accommodation Abilities, Laptop Usage , Scotopic Illumination , Photopic IlluminationAbstract
Laptops are widely used even in dark scotopic rooms. This study compares monocular accommodation statuses with laptop usage under three illuminations. Thirty university students read on a laptop for 5 minutes under scotopic, mesopic, and photopic conditions. The monocular amplitude of accommodation, accommodation facility, and accommodation error are measured for each illumination. Repeated measure ANOVA shows a significant difference in the amplitude, facility, and error between different illuminations [F (1.49, 43.18) = 10.61, p<0.001], [F (1.65, 36.30) = 6.78, p=0.005] and [F (2, 56) = 3.65, p=0.032]. Scotopic illumination reduces monocular accommodation abilities with laptop usage.
References
Allen, L., & Mehta, J. (2023). The impact of smartphone use on accommodative functions: pilot study. Strabismus, 31(1), 66-72. DOI: https://doi.org/10.1080/09273972.2023.2179076
Ashwini, K. V., Shankar, S. S., Rajbanshi, D., Paudel, S., Singh, P., Chandana, K. M., & Varsha, C. (2023). The consequences of gaming on mobile devices versus laptops on binocular visual functioning. TNOA Journal of Ophthalmic Science and Research, 61(2), 207–207. DOI: https://doi.org/10.4103/tjosr.tjosr_10_23
Chikuse, M., Mzumara, T., Afonne, J., & Banda, O. (2023). The effect of age and sex on ocular parameters associated with smartphone use among students in Malawi: a cross-sectional study. Research Square, v1, 1-12. DOI: https://doi.org/10.21203/rs.3.rs-3045303/v1
Devenier, M., Hansraj, R., & Rasengane, T. A. (2021). The response of the accommodation system to digital and print images. African Vision and Eye Health, 80(1), 6. DOI: https://doi.org/10.4102/aveh.v80i1.662
Hinkley, S., Iverson-Hill, S., & Haack, L. (2014). The correlation between accommodative lag and refractive error in minors under 18. Austin J Clin Ophthalmology, 1(2), 1007.
Jeng, W.-D., Ouyang, Y., Huang, T.-W., Duann, J.-R., Chiou, J.-C., Tang, Y.-S., & Ou-Yang, M. (2014). Research of accommodative microfluctuations caused by visual fatigue based on liquid crystal and laser displays. Applied Optics, 53(29). H76-H84. DOI: https://doi.org/10.1364/AO.53.000H76
Kang, J. W., Chun, Y. S., & Moon, N. J. (2021). A comparison of accommodation and ocular discomfort change according to display size of smart devices. BMC Ophthalmology, 21(1), 1-9. DOI: https://doi.org/10.1186/s12886-020-01789-z
Kim, B. H., Han, S. H., Park, S. M., Bae, S. B., Woo, Y. J., Song, G. J., Bang, E. M., & Seo, D. E. (2020). A study on the stability fatigue according to the accommodation change due to the use of smartphone. Journal of Korean Clinical Health Science, 8(1), 1362–1368.
Kubota, M., Kubota, S., Kobashi, H., Ayaki, M., Negishi, K., & Tsubota, K. (2020). Difference in pupillary diameter as an important factor for evaluating amplitude of accommodation: A prospective observational study. Journal of Clinical Medicine, 9(8), 2678. DOI: https://doi.org/10.3390/jcm9082678
Lara, F., Del Águila-Carrasco, A. J., Marín-Franch, I., Riquelme-Nicolás, R., & López-Gil, N. (2020). The Effect of Retinal Illuminance on the Subjective Amplitude of Accommodation. Optometry and Vision Science, 97(8), 641-647. DOI: https://doi.org/10.1097/OPX.0000000000001544
Liang, X., Wei, S., Li, S. M., An, W., Du, J., & Wang, N. (2021). Effect of reading with a mobile phone and text on accommodation in young adults. Graefe's Archive for Clinical and Experimental Ophthalmology, 259(5), 1281-1288. DOI: https://doi.org/10.1007/s00417-020-05054-3
Majumder, C., & Zafirah Zaimi, N. (2017). Comparison of Amplitude of Accommodation in Different Room Illumination while Using VDU as a Target. International Journal of Ophthalmic Research, 3(3), 243–248. DOI: https://doi.org/10.17554/j.issn.2409-5680.2017.03.64
Narawi, W. S., Razak, S. A., & Azman, N. (2020). The effect of smartphone usage on accommodation status. Malaysian Journal of Medicine and Health Sciences, 16(2), 244-247.
Okada, Y., Kojima, T., Oohashi, T., & Miyao, M. (2013). The effect of environmental illumination and screen brightness on accommodation and convergence. Digest of Technical Papers - SID International Symposium, 44(1), 1078-1081. DOI: https://doi.org/10.1002/j.2168-0159.2013.tb06411.x
Padavettan, C., Nishanth, S., Vidhyalakshmi, S., Madhivanan, N., & Madhivanan, N. (2021). Changes in vergence and accommodation parameters after smartphone use in healthy adults. Indian Journal of Ophthalmology, 69(6), 1487-1490. DOI: https://doi.org/10.4103/ijo.IJO_2956_20
Sheppard, A. L., & Wolffsohn, J. S. (2018). Digital eye strain: Prevalence, measurement and amelioration. In BMJ Open Ophthalmology, 3(1), e000146. DOI: https://doi.org/10.1136/bmjophth-2018-000146
Yano, S., Imai, H., & Park, M.-C. (2018). Measurement of accommodation response in integral photography images. Optical Engineering, 57(06), 061617-061617. DOI: https://doi.org/10.1117/1.OE.57.6.061617
Yu, H., Li, W., Chen, Z., Chen, M., Zeng, J., Lin, X., & Zhao, F. (2022). Is Ocular Accommodation Influenced by Dynamic Ambient Illumination and Pupil Size? International Journal of Environmental Research and Public Health, 19(17), 10490. DOI: https://doi.org/10.3390/ijerph191710490
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Azmir Ahmad, Saiful Azlan Rosli, Chen Ai-Hong, Kareem Allinjawi
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.