Colouring Space in Virtual Reality: A-Chromatic and chromatic composition and color saturation affecting visual perception
DOI:
https://doi.org/10.21834/e-bpj.v9iSI23.6148Keywords:
achromatic, Virtual Reality , Colour Saturation , Chromatic, AchromaticAbstract
Interior design is one field that employs three-dimensional perspective presentations to illustrate space. This study investigated the variations in colour composition and saturation affecting visual impressions. The method tests the three-dimensional rendering of images through virtual reality (VR). The variables connect to the differences in room and furniture colour composition. The visual simulation test conducted on two experiments included 20 participants who replied to a group of chromatic-achromatic and achromatic-chromatic, with saturation levels ranging. The findings reveal that colour composition impacts the clarity of space, and the variation in colour saturation influences the impression of the room's depth.
References
Abdullah, A. H., Wahab, R. A., Mokhtar, M., Atan, N. A., Halim, N. D. A., Surif, J.,Rahman, S. N. S. A. (2022). DOES Sketchup Make Improve Students’ Visual-Spatial Skills? IEEE Access, 10, 13936–13953. https://doi.org/10.1109/ACCESS.2022.3147476 DOI: https://doi.org/10.1109/ACCESS.2022.3147476
Bosselmann, P. (1999). Representation of Places: Reality and realism in city design. California: University of California Press. DOI: https://doi.org/10.1525/9780520918269
Boughen, N. (2005). 3ds max Lighting. Texas: Wordware Publishing, Inc.
Carmona-Medeiro, E., Antequera-Barroso, J. A., & Domingo, J. M. C. noso. (2021). Future Teachers’ Perception Of The Usefulness Of Sketchup For Understanding The Space And Geometry Domain. Heliyon, 7(10). https://doi.org/10.1016/j.heliyon.2021.e08206 DOI: https://doi.org/10.1016/j.heliyon.2021.e08206
Díaz-Barrancas, F., Cwierz, H., Pardo, P. J., Pérez, Á. L., & Suero, M. I. (2020). Spectral color management in virtual reality scenes. Sensors (Switzerland), 20(19), 116. https://doi.org/10.3390/s20195658 DOI: https://doi.org/10.3390/s20195658
Dresp-Langley, B., & Reeves, A. (2014). Effects of saturation and contrast polarity on the figure-ground organization of color on grey. Frontiers in Psychology, 5(SEP). https://doi.org/10.3389/fpsyg.2014.01136 DOI: https://doi.org/10.3389/fpsyg.2014.01136
Egusa, H. (1983). Effects of brightness, hue, and saturation on perceived depth between adjacent regions in the visual field. Perception, 12(2), 167–175. https://doi.org/10.1068/p120167 DOI: https://doi.org/10.1068/p120167
Farné, M. (1977). Brightness as an indicator to distance: relative brightness per se or contrast with the background? Perception, Vol. 6, pp. 287–293. Retrieved from http://www.perceptionweb.com/perception/fulltext/p06/p060287.pdf DOI: https://doi.org/10.1068/p060287
Flynn, J. E., Hendrick, C., Spencer, T., & Martyniuk, O. (1979). A Guide to Methodology Procedures for Measuring Subjective Impressions in Lighting. Journal of the Illuminating Engineering Society, 8(2), 96. https://doi.org/10.1080/00994480.1979.10748577 DOI: https://doi.org/10.1080/00994480.1979.10748577
Hedrich, M., Bloj, M., & Ruppertsberg, A. I. (2009). Color constancy improves for real 3D objects. Journal of Vision, 9(4), 1–16. https://doi.org/10.1167/9.4.16 DOI: https://doi.org/10.1167/9.4.16
Kaleja, P., & Kozlovská, M. (2017). Virtual Reality as Innovative Approach to the Interior Designing. Selected Scientific Papers - Journal of Civil Engineering, 12(1), 109–116. https://doi.org/10.1515/sspjce-2017-0011 DOI: https://doi.org/10.1515/sspjce-2017-0011
Krupinski, R. (2020). Virtual reality system and scientific visualisation for smart designing and evaluating of lighting. Energies, 13(20). https://doi.org/10.3390/en13205518 DOI: https://doi.org/10.3390/en13205518
Lindemann, F., & Ropinski, T. (2011). About the influence of illumination models on image comprehension in direct volume rendering. IEEE Transactions on Visualization and Computer Graphics, 17(12), 1922–1931. https://doi.org/10.1109/TVCG.2011.161 DOI: https://doi.org/10.1109/TVCG.2011.161
MacEachren, A. M. (1995). How Maps Work: representation, visualisation and design. New York: The Guilford Press.
Meerwein, G., Rodeck, B., & Mahnke, F. H. (2007). Color - Communication in Architectural Space. In Color - Communication in Architectural Space. bhttps://doi.org/10.1007/978-3-7643-8286-5 DOI: https://doi.org/10.1007/978-3-7643-8286-5
Paes, D., Arantes, E., & Irizarry, J. (2017). Immersive environment for improving the understanding of architectural 3D models: Comparing user spatial perception between immersive and traditional virtual reality systems. Automation in Construction, 84(September), 292–303. https://doi.org/10.1016/j.autcon.2017.09.016 DOI: https://doi.org/10.1016/j.autcon.2017.09.016
Ping, J., Liu, Y., & Weng, D. (2021). Review of depth perception in virtual and real fusion environment. Journal of Image and Graphics, Volume 26, Pages 1503-1520. https://doi.org/10.11834/jig.210027 DOI: https://doi.org/10.11834/jig.210027
Shields, R. (2005). The Virtual. London: Taylor & Francis e-Library. DOI: https://doi.org/10.4324/9780203987186
Whyte, J. (2002). Virtual Reality and The Built Environment. Oxford: Architectural Press.
Zhang, L. (2019). Virtual Design Method of Interior Landscape Based on 3D Vision. Open House International, 44(3), 36–39. https://doi.org/10.1108/ohi-03-2019-b0010 DOI: https://doi.org/10.1108/OHI-03-2019-B0010
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Yulyta Kodrat P, Mutia Nurdina, Rafeah Legino

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.