Enhancing Crop Cooling of Greenhouse in the Yangtze River Delta Region: A CFD Method approach

Authors

  • Zhang Weijian Faculty of Mechanical Engineering, College of Engineering, Universiti Teknologi MARA, Selangor, Malaysia
  • Nurnida Elmira Othman Faculty of Mechanical Engineering, College of Engineering, Universiti Teknologi MARA, Selangor, Malaysia; Wind Engineering & Building Physics (WEBP), Faculty of Mechanical Engineering, Universiti Teknologi MARA, Selangor, Malaysia
  • Azli Abd Razak Faculty of Mechanical Engineering, College of Engineering, Universiti Teknologi MARA, Selangor, Malaysia; Wind Engineering & Building Physics (WEBP), Faculty of Mechanical Engineering, Universiti Teknologi MARA, Selangor, Malaysia
  • Yu Xingang Faculty of Intelligent Manufacturing, Nanjing Vocational College of Information Technology, Nanjing City, Jiangsu Province, China

DOI:

https://doi.org/10.21834/e-bpj.v10i33.7233

Keywords:

Greenhouse, Yangtze River Delta, Ventilation Optimization, Shading Net

Abstract

This study addresses the challenges of inadequate air circulation and excessive internal temperatures in greenhouses within the Yangtze River Delta region. The research uses experimental methods and computational fluid dynamics (CFD). Findings revealed that introducing 90° side windows significantly improved airflow and temperature distribution, whereas 45° side windows had minimal impact. Adding layers improved cooling performance at all measurement points. However, as the number of shading net layers increases, the cooling capacity decreases with each additional shade net layer. These findings offer a scientific basis for this region's greenhouse ventilation and shading nets using strategies for optimizing greenhouse environments.

References

Abdel-Ghany, A. M., & Al-Helal, I. M. (2011). Analysis of solar radiation transfer: A method to estimate the porosity of a plastic shading net. Energy Conversion and Management, 52(3), 1755-1762.doi: https://doi.org/10.1016/j.enconman.2010.11.002

Abdel-Ghany, A. M., Picuno, P., Al-Helal, I., Alsadon, A., Ibrahim, A., & Shady, M. (2015). Radiometric characterization, solar and thermal radiation in a greenhouse as affected by shading configuration in an arid climate. Energies, 8(12), 13928–13937. doi: https://doi.org/10.3390/en81212404

Abid, H., Ketata, A., Lajnef, M., Zghal, O., Driss, Z., Zouari, S., ... & Arrabito, E. (2023, December). Influence of mechanical ventilation on greenhouse microclimate in Sfax City. In 2023, the 14th International Renewable Energy Congress (IREC) (pp. 1–4). IEEE.

Ahemd, H. A., Al-Faraj, A. A., & Abdel-Ghany, A. M. (2016). Shading greenhouses to improve the microclimate, energy, and water saving in hot regions: A review. Scientia Horticulturae, 201, 36–45.

Akrami, M., Javadi, A. A., Hassanein, M. J., Farmani, R., Dibaj, M., Tabor, G. R., & Negm, A. (2020). Study the effects of vent configuration on mono-span greenhouse ventilation using computational fluid dynamics. Sustainability, 12(3), 986. doi: https://doi.org/10.3390/su12030986

Al-Rikabi, S., Santolini, E., Pulvirenti, B., Bovo, M., Barbaresi, A., Torreggiani, D., & Tassinari, P. (2023). Definition of thermal comfort of crops within naturally ventilated greenhouses. Journal of Agricultural Engineering, 54(4).

Chen, S. S., & Lv, X. J. (2005). (2005). Calculation of essential wind pressure. Zhejiang Meteorology, 26 (4), 26–29.

Fatnassi, H., Errais, R., & Poncet, C. (2025). Optimizing greenhouse design for enhanced microalgae production: A CFD Analysis of microclimate and water thermal dynamics in raceway ponds. Ecological Modelling, 499, 110946.

Ghoulem, M., El Moueddeb, K., Nehdi, E., Boukhanouf, R., & Calautit, J. K. (2019). Greenhouse design and cooling technologies for sustainable food cultivation in hot climates: Review of current practice and future status. Biosystems Engineering, 183, 121–150. doi: https://doi.org/10.1016/j.biosystemseng.2019.04.016

He, A., Wu, X., Jiang, X., Maimaitituxun, R., Entemark, A., & Xu, H. (2023). A Study on the Impact of Different Cooling Methods on the Indoor Environment of Greenhouses Used for Lentinula Edodes during Summer. Agriculture, 13(8), 1560.

Kavga, A., Thomopoulos, V., Pischinas, E., Tsipianitis, D., & Nikolakopoulos, P. (2023). Design and Simulation of a Greenhouse in a Computational Environment (ANSYS/FLUENT) and an Automatic Control System in a LABVIEW Environment. Simulation Modelling Practice and Theory, 129, 102837. doi: https://doi.org/10.1016/j.simpat.2023.102837

KeShi, H. K., Chen DaYue, C. D., Sun LiJuan, S. L., Huang ZhenYu, H. Z., & Liu ZhengLu, L. Z. (2014). Analysis of the climate inside multi-span plastic greenhouses under different shade strategies and wind regimes. doi: https://doi.org/10.7235/hort.2014.13156

Kim, R. W., Kim, J. G., Lee, I. B., Yeo, U. H., Lee, S. Y., & Decano-Valentin, C. (2021). Development of three-dimensional visualization technology of the aerodynamic environment in a greenhouse using CFD and VR technology, part 1: Development of a VR database using CFD. Biosystems Engineering, 207, 33–58. doi: https://doi.org/10.1016/j.biosystemseng.2021.02.017

Kittas, C., & Bartzanas, T. (2007). Greenhouse microclimate and dehumidification effectiveness under different ventilator configurations. Building and Environment, 42(10), 3774-3784.doi: https://doi.org/10.1016/j.buildenv.2006.06.020

Kong, X. (1999). Advanced Seepage Mechanics. University of Science and Technology of China Press.

Mao, Q., & Li, H. (2025). Comparison and optimization of ventilation schemes in a multi-span greenhouse under natural ventilation. International Journal of Ventilation, 1-24.

Maraveas, C., Karavas, C. S., Loukatos, D., Bartzanas, T., Arvanitis, K. G., & Symeonaki, E. (2023). Agricultural greenhouses: Resource management technologies and perspectives for zero greenhouse gas emissions. Agriculture, 13(7), 1464.

Santolini, E., Pulvirenti, B., Guidorzi, P., Bovo, M., Torreggiani, D., & Tassinari, P. (2022). Analysis of the effects of shading screens on the microclimate of greenhouses and glass facade buildings. Building and Environment, 211, 108691. doi: https://doi.org/10.1016/j.buildenv.2021.108691

Shi, J., Wang, H., & Wang, J. (2023). CFD Simulation Study on the Cooling Characteristics of Shading and Natural Ventilation in the Greenhouse of a Botanical Garden in Shanghai. Sustainability, 15(4), 3056. doi: https://doi.org/10.3390/su15043056

Shukla, R. M., & Kumar, R. (2024). Impact of Shade Nets on Tomato Output and Quality in the Temperate Region of Kashmir Valley. Journal of Global Agriculture and Ecology, 16(2), 1–13.

Turcotte, D.; Schubert, G. (2002). Geodynamics (2nd ed.). New York: Cambridge University Press.

Willits, D. H., & Peet, M. M. (2000). Intermittent application of water to an externally mounted greenhouse shade cloth to modify cooling performance. Transactions of the ASAE, 43(5), 1247–1252. doi: 10.13031/2013.3018

Wu, G., Zhao, M., Liu, B., Wang, X., Yuan, M., Wang, J., ... & Sun, Y. (2024). Environmental impact and mitigation potentials in greenhouse tomato production systems in the Yangtze River Delta. Plant and Soil, 1–12.

Zhang, X., Wang, H., Zou, Z., & Wang, S. (2016). CFD and weighted entropy-based simulation and Chinese Solar Greenhouse temperature distribution optimization. Biosystems Engineering, 142, 12–26. doi: https://doi.org/10.1016/j.biosystemseng.2015.11.006

ANSYS Fluent User’s Guide(2010). ANSYS. Inc.

Downloads

Published

2025-09-30

How to Cite

Weijian, Z., Othman, N. E., Abd Razak, A., & Xingang, Y. (2025). Enhancing Crop Cooling of Greenhouse in the Yangtze River Delta Region: A CFD Method approach. Environment-Behaviour Proceedings Journal, 10(33), 323–333. https://doi.org/10.21834/e-bpj.v10i33.7233

Issue

Section

Technology-related Environment