Effects of Height on Cooling of Single-Span and Multi-Span Greenhouses in Summer in the YRD Region
DOI:
https://doi.org/10.21834/e-bpj.v10i34.7332Keywords:
Greenhouse geometry, Structural height, Natural ventilation, SST turbulence modelAbstract
Extreme summer heat in the Yangtze River Delta (YRD) drives greenhouse air temperatures above crop tolerance, threatening yield stability. Natural ventilation offers a low-energy alternative to mechanical cooling, but its dependence on structural height remains poorly quantified. This study applies validated CFD simulations—benchmarking turbulence models, with the SST model achieving the highest accuracy—to assess single-span and multi-span greenhouses at varying heights. Results demonstrate contrasting mechanisms: taller single-span structures accumulate heat, whereas taller multi-span structures enhance buoyancy-driven ventilation and cooling. The findings establish a CFD-based framework for height optimization, delivering actionable guidelines for climate-adaptive greenhouse design.
References
Kruger, S., & Pretorius, L. (2008). Comparison of indoor climate in detached and multi-span greenhouses. HEFAT 2008. doi: http://hdl.handle.net/2263/42771
Ogunlowo, Q. O., Akpenpuun, T. D., Na, W. H., Rabiu, A., Adesanya, M. A., Addae, K. S., ... & Lee, H. W. (2021). Analysis of heat and mass distribution in a single-and multi-span greenhouse microclimate. Agriculture, 11(9), 891. doi: https://doi.org/10.3390/agriculture11090891 DOI: https://doi.org/10.3390/agriculture11090891
Ding XiaoTao, D. X., Jin HaiJun, J. H., Zhang HongMei, Z. H., & Yu JiZhu, Y. J. (2011). Comparative study on the temperature and humidity of single-span and multi-span plastic greenhouses. Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences
Kruger, S., & Pretorius, L. (2008, January). Comparison of the indoor climate in multi-span and detached greenhouses with various ventilator configurations. In ASME International Mechanical Engineering Congress and Exposition (Vol. 48715, pp. 1635-1642). doi: https://doi.org/10.1115/IMECE2008-67304 DOI: https://doi.org/10.1115/IMECE2008-67304
Kruger, S., & Pretorius, L. (2019, November). Evaluating the Effect of Number of Spans on Heat Transfer in Greenhouses. In ASME International Mechanical Engineering Congress and Exposition (Vol. 59452, p. V008T09A040). American Society of Mechanical Engineers. doi: https://doi.org/10.1115/IMECE2019-11420 DOI: https://doi.org/10.1115/IMECE2019-11420
Chu, C. R., Lan, T. W., Tasi, R. K., Wu, T. R., & Yang, C. K. (2017). Wind-driven natural ventilation of greenhouses with vegetation. Biosystems engineering, 164, 221-234. doi: https://doi.org/10.1016/j.biosystemseng.2017.10.008 DOI: https://doi.org/10.1016/j.biosystemseng.2017.10.008
He, K., Chen, D., Sun, L., Huang, Z., & Liu, Z. (2015). Effects of vent configuration and span number on greenhouse microclimate under summer conditions in Eastern China. International Journal of Ventilation, 13(4), 381-396. doi: https://doi.org/10.1080/14733315.2015.11684062 DOI: https://doi.org/10.1080/14733315.2015.11684062
Villagrán, E., Flores-Velazquez, J., Akrami, M., & Bojacá, C. (2021). Influence of the Height in a Colombian Multi-Tunnel Greenhouse on Natural Ventilation and Thermal Behavior: Modeling Approach. Sustainability, 13(24), 13631. doi: https://doi.org/10.3390/su132413631 DOI: https://doi.org/10.3390/su132413631
Fatnassi, H., Boulard, T., Benamara, H., Roy, J. C., Suay, R., & Poncet, C. (2017). Increasing the height and multiplying the number of spans of greenhouse: How far can we go. Acta Hortic, 1170, 137-144. DOI: https://doi.org/10.17660/ActaHortic.2017.1170.15
Xu, D., Li, Y., Zhang, Y., Xu, H., Li, T., & Liu, X. (2020). Effects of orientation and structure on solar radiation interception in Chinese solar greenhouse. PLoS One, 15(11), e0242002. doi: https://doi.org/10.1371/journal.pone.0242002 DOI: https://doi.org/10.1371/journal.pone.0242002
Jilani, M. N. H., & Mohapatra, P. K. (2024). Computational fluid dynamics simulation of earth air heat exchanger combined with the Quonset type greenhouse to develop a sustainable controlled environment. Geothermics, 116, 102845.
doi: https://doi.org/10.1016/j.geothermics.2023.102845
Zhang, X., Wang, H., Zou, Z., & Wang, S. (2016). CFD and weighted entropy based simulation and optimisation of Chinese Solar Greenhouse temperature distribution. Biosystems Engineering, 142, 12-26. doi: https://doi.org/10.1016/j.biosystemseng.2015.11.006
Kavga, A., Thomopoulos, V., Pischinas, E., Tsipianitis, D., & Nikolakopoulos, P. (2023). Design and Simulation of a Greenhouse in a Computational Environment (ANSYS/FLUENT) and an Automatic Control System in a LABVIEW Environment. Simulation Modelling Practice and Theory, 129, 102837. doi: https://doi.org/10.1016/j.simpat.2023.102837 DOI: https://doi.org/10.1016/j.simpat.2023.102837
Kim, R. W., Kim, J. G., Lee, I. B., Yeo, U. H., Lee, S. Y., & Decano-Valentin, C. (2021). Development of three-dimensional visualisation technology of the aerodynamic environment in a greenhouse using CFD and VR technology, part 1: Development of VR a database using CFD. Biosystems Engineering, 207, 33-58.
doi: https://doi.org/10.1016/j.biosystemseng.2021.02.017 DOI: https://doi.org/10.1016/j.biosystemseng.2021.02.017
Piscia, D., Muñoz, P., Panadès, C., & Montero, J. I. (2015). A method of coupling CFD and energy balance simulations to study humidity control in unheated greenhouses. Computers and Electronics in Agriculture, 115, 129-141.
doi: https://doi.org/10.1016/j.compag.2015.05.005 DOI: https://doi.org/10.1016/j.compag.2015.05.005
Jilani, M. N. H., & Mohapatra, P. K. (2024). Computational fluid dynamics simulation of earth air heat exchanger combined with the Quonset type greenhouse to develop a sustainable controlled environment. Geothermics, 116, 102845.
doi: https://doi.org/10.1016/j.geothermics.2023.102845 DOI: https://doi.org/10.1016/j.geothermics.2023.102845
Zhang, X., Wang, H., Zou, Z., & Wang, S. (2016). CFD and weighted entropy based simulation and optimisation of Chinese Solar Greenhouse temperature distribution. Biosystems Engineering, 142, 12-26. doi: https://doi.org/10.1016/j.biosystemseng.2015.11.006 DOI: https://doi.org/10.1016/j.biosystemseng.2015.11.006
Ansys Fluent Theory Guide (2021). ANSYS. Inc.
ANSYS Fluent User’s Guide(2010). ANSYS. Inc.
Kong, Xiangyan. (1999). Advanced Seepage Mechanics. University of Science and Technology of China Press.
Fatnassi, H. , Errais, R. , & Poncet, C. . (2025). Optimizing greenhouse design for enhanced microalgae production: a cfd analysis of microclimate and water thermal dynamics in raceway ponds. Ecological Modelling, 499.
Zhang, S. , Guo, L. , Yu, H. , Zhang, B. , Chen, M. , & Zhang, L. , et al. (2025). An integrated cfd and cnn-gru approach for accurate prediction of pm2.5 in greenhouse environments of northeast china. Building and Environment, 283(000). DOI: https://doi.org/10.1016/j.buildenv.2025.113423
Fatnassi, H. , Errais, R. , & Poncet, C. . (2025). Optimizing greenhouse design for enhanced microalgae production: a cfd analysis of microclimate and water thermal dynamics in raceway ponds. Ecological Modelling, 499(000). DOI: https://doi.org/10.1016/j.ecolmodel.2024.110946
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 zhang weijian

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.